精英家教网 > 高中数学 > 题目详情
7.设函数f(x)(x∈R)满足f(x+π)=f(x)+sinx,当0≤x<π时,f(x)=0,则$f(\frac{7π}{6})$=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.0D.-$\frac{1}{2}$

分析 利用函数性质和正弦函数性质求解.

解答 解:∵函数f(x)(x∈R)满足f(x+π)=f(x)+sinx,当0≤x<π时,f(x)=0,
∴$f(\frac{7π}{6})$=f($π+\frac{π}{6}$)=f($\frac{π}{6}$)+sin$\frac{π}{6}$=sin$\frac{π}{6}$=$\frac{1}{2}$.
故选:A.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知圆C同时满足下列三个条件:①与y轴相切;②在直线y=x上截得弦长为$\sqrt{7}$;③圆心在直线x-3y=0上,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知$f(x)=\frac{{lnx+{2^x}}}{x^2}$,求f′(1)=2ln2-3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数y=cos(2x-$\frac{π}{4}$)的单调递减区间为[kπ+$\frac{π}{8}$,kπ+$\frac{5π}{8}$],k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.过点(1,2)且与2x-y+1=0平行的直线方程为2x-y=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.与直线2x+y+1=0的距离为$\frac{\sqrt{5}}{5}$的直线方程为2x+y=0或2x+y+2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知x>1,则$\frac{4}{x-1}$+x的最小值是5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知圆C:x2+y2+2x-4y+m=0与y轴相切.
(1)求m的值;
(2)若圆C的切线在x轴和y轴上的截距相等,求该切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=$\sqrt{{x}^{2}+1}$-ax.
(1)当a≥1时,证明函数f(x)在区间[0,+∞)上是单调减函数;
(2)当x∈[0,2]时,f(x)≥0恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案