精英家教网 > 高中数学 > 题目详情
(2012•吉安县模拟)已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍,且经过点M(2,1),平行于OM直线?在y轴上的截距为m(m<0),设直线?交椭圆于两个不同点A、B,
(1)求椭圆方程;
(2)求证:对任意的m的允许值,△ABM的内心I在定直线x=2上.
分析:(1)设出椭圆的标准方程,利用长轴长是短轴长的2倍,且经过点M(2,1),建立方程组,从而可求椭圆的方程;
(2)证明△ABM的角平分线MI垂直x轴,从而内心I的横坐标等于点M的横坐标,则可得对任意的m的允许值,△ABM的内心I在定直线 x=2上.
解答:(1)解:设椭圆方程为
x2
a2
+
y2
b2
=1(a>b>0)

则∵长轴长是短轴长的2倍,且经过点M(2,1),
a=2b
4
a2
+
1
b2
=1⇒
a2=8
b2=2

所以,椭圆方程为
x2
8
+
y2
2
=1
(5分)
(2)证明:因为直线?平行于OM,且在y轴上的截距为m,又KOM=
1
2
,所以直线?的方程为y=
1
2
x+m

y=
1
2
x+m
x2
8
+
y2
2
=1
x2+2mx+2m2-4=0

设A(x1,y1),B(x2,y2),则x1+x2=-2m,x1x2=2m2-4,(8分)
设直线MA、MB的斜率分别为k1、k2,则k1=
y1-1
x1-2
k2=
y2-1
x2-2

k1+k2=
y1-1
x1-2
+
y2-1
x2-2
=
(y1-1)(x2-2)+(y2-1)(x1-2)
(x1-2)(x2-2)
=
(
1
2
x1+m-1)(x2-2)+(
1
2
x2+m-1)(x1-2)
(x1-2)(x2-2)
=
x1x2+(m-2)(x1+x2)-4(m-1)
(x1-2)(x2-2)
=
2m2-4+(m-2)(-2m)-4(m-1)
(x1-2)(x2-2)
=0
(12分)
故k1+k2=0,所以,△ABM的角平分线MI垂直x轴,因此,内心I的横坐标等于点M的横坐标,则对任意的m的允许值,△ABM的内心I在定直线 x=2上(13分)
点评:本题考查椭圆的标准方程,考查直线与椭圆的位置关系,解题的关键是联立方程组,利用韦达定理,从而确定直线MA、MB的斜率的和为0.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•吉安县模拟)已知a,b是实数,i是虚数单位,若满足
a
1-bi
=1+i
,则a+bi等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•吉安县模拟)已知集合A={0,1},B={y|x2+y2=1,x∈A},则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•吉安县模拟)已知等差数列{an}的前n项和为Sn,又知(xlnx)′=lnx+1,且S10=
e
1
lnxdx,S20=17,则S30为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•吉安县模拟)已知a,b都为正实数,且
1
a
+
1
b
=1
,则
2+b
2ab
的最大值为
9
16
9
16

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•吉安县模拟)选做题:请考生在下列两题中任选一题作答.若两题都做,则按做的第一题评阅计分.本题共5分.
(1).(不等式选讲)若不等式||x-a|-2|<1的解集是(-2,0)∪(2,4),则实数a=
1
1

(2).(坐标系与参数方程)在极坐标系中,点M(4,
π
3
)到直线l:ρ(2cosθ+sinθ)=4的距离d=
2
15
5
2
15
5

查看答案和解析>>

同步练习册答案