精英家教网 > 高中数学 > 题目详情

【题目】已知直线l的斜率为k,经过点(1,﹣1),将直线向右平移3个单位,再向上平移2个单位,得到直线m,若直线m不经过第四象限,则直线l的斜率k的取值范围是

【答案】0≤k≤
【解析】解:依题意可设直线l的方程为y+1=k(x﹣1),
即y=kx﹣k﹣1,将直线l向右平移3个单位,得到直线y=k(x﹣3)﹣k﹣1,
再向上平移2个单位得到直线m:y=k(x﹣3)﹣k﹣1+2,即y=kx﹣4k+1.
由于直线m不经过第四象限,所以应有
解得0≤k≤
所以答案是:0≤k≤
【考点精析】本题主要考查了直线的斜率的相关知识点,需要掌握一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是 k = tanα才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数)的图象在处的切线为为自然对数的底数)

(1)求的值;

(2)若,且对任意恒成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论的单调性;

(2)若直线与曲线都只有两个交点,证明:这四个交点可以构成一个平行四边形,并计算该平行四边形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设个人月收入在5000元以内的个人所得税档次为(单位:元):

设某人的月收入为x元,试编一段程序,计算他应交的个人所得税.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,解不等式

(2)若存在实数,使得不等式成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形是梯形,四边形是矩形,且平面平面 是线段上的动点.

1试确定点的位置,使平面,并说明理由;

21的条件下,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合P={x|2x2﹣5x+2≤0},函数y=log2(ax2+2)的定义域为S
(1)若P∩S≠,求实数a的取值范围
(2)若方程log2(ax2+2)=2在 上有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知多面体如图所示,底面为矩形,其中平面 ,若分别是的中心,其中.

1)证明:

2)若二面角的余弦值为,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|x2﹣2x﹣8≤0,x∈R},B={x|x2﹣(2m﹣3)x+m2﹣3m≤0,x∈R,m∈R }.
(1)若A∩B=[2,4],求实数m的值;
(2)设全集为R,若ARB,求实数m的取值范围.

查看答案和解析>>

同步练习册答案