【题目】已知△ABC中,B(-1,0),C(1,0),AB=6,点P在AB上,且∠BAC=∠PCA.
(1)求点P的轨迹E的方程;
(2)若,过点C的直线与E交于M,N两点,与直线x=9交于点K,记QM,QN,QK的斜率分别为k1,k2,k3,试探究k1,k2,k3的关系,并证明.
【答案】(1).(2) k1+k2=2k3证明见解析;
【解析】
(1)利用已知条件判断P的轨迹为椭圆,转化求解即可.
(2)如图,设M(x1,y1),N(x2,y2),可设直线MN方程为y=k(x-1),则K(4,3k),联立直线与椭圆方程,通过韦达定理转化求解斜率关系,证明k1+k2=2k3.
解:(1)如图三角形ACP中,∠BAC=∠PCA,所以PA=PC,
所以PB+PC=PB+PA=AB=6,
所以点P的轨迹是以B,C为焦点,长轴为4的椭圆(不包含实轴的端点),
所以点P的轨迹E的方程为.
(2)k1,k2,k3的关系:k1+k2=2k3.
证明:如图,设M(x1,y1),N(x2,y2),
可设直线MN方程为y=k(x-1),则K(4,3k),
由可得(9k2+8)x2-18k2x+(9k2-72)=0,
,,
,
,,
因为,
所以:k1+k2=2k3.
科目:高中数学 来源: 题型:
【题目】为了了解地区足球特色学校的发展状况,某调查机构得到如下统计数据:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
足球特色学校(百个) | 0.30 | 0.60 | 1.00 | 1.40 | 1.70 |
(Ⅰ)根据上表数据,计算与的相关系数,并说明与的线性相关性强弱(已知:,则认为与线性相关性很强;,则认为与线性相关性一般;,则认为与线性相关性较弱);
(Ⅱ)求关于的线性回归方程,并预测地区2019年足球特色学校的个数(精确到个)
参考公式:,,,,,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在梯形ABCD中,AD//BC,∠ABC=,,∠ADC=,PA⊥平面ABCD且PA=.
(1)求直线AD到平面PBC的距离;
(2)求出点A到直线PC的距离;
(3)在线段AD上是否存在一点F,使点A到平面PCF的距离为.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设命题p:函数f(x)=lg(ax2-x+16a)的定义域为R;命题q:不等式3x-9x<a对任意x∈R恒成立.
(1)如果p是真命题,求实数a的取值范围;
(2)如果命题“p或q”为真命题且“p且q”为假命题,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线 的两条渐近线与抛物线的准线分别交于,两点.若双曲线的离心率为,的面积为,为坐标原点,则抛物线的焦点坐标为 ( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一次考试中,5名同学的数学、物理成绩如表所示:
学生 | |||||
数学分 | 89 | 91 | 93 | 95 | 97 |
物理分 | 87 | 89 | 89 | 92 | 93 |
请在图中的直角坐标系中作出这些数据的散点图,并求出这些数据的回归方程;
要从4名数学成绩在90分以上的同学中选2名参加一项活动,以X表示选中的同学的物理成绩高于90分的人数,求随机变量X的分布列及数学期望.
参考公式:线性回归方程;,其中,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在中国北京世界园艺博览会期间,某工厂生产、、三种纪念品,每一种纪念品均有精品型和普通型两种,某一天产量如下表:(单位:个)
纪念品 | 纪念品 | 纪念品 | |
精品型 | |||
普通型 |
现采用分层抽样的方法在这一天生产的纪念品中抽取个,其中种纪念品有个.
(1)求的值;
()从种精品型纪念品中抽取个,其某种指标的数据分别如下:、、、、,把这个数据看作一个总体,其均值为,方差为,求的值;
(3)用分层抽样的方法在种纪念品中抽取一个容量为的样木,从样本中任取个纪念品,求至少有个精品型纪念品的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com