精英家教网 > 高中数学 > 题目详情

【题目】袋中装有一些大小相同的小球,其中号数为1的小球1个,号数为2的小球2个,号数为3的小球3个,,号数为n的小球有n个,从袋中取一球,其号数记为随机变量,则的数学期望E=______________.

【答案】

【解析】分析:由题意知从袋中任取一球,其号数作为随机变量ξ则变量的可能取值是1、2、3…n,当ξ=1时,表示从袋中取球,取到一号球,试验发生包含的所有事件共有(1+2+3+…+n),而满足条件的事件数是1,求比值得到概率,以此类推,写出分布列和期望.

详解由题意知从袋中任取一球,其号数作为随机变量ξ则变量的可能取值是1、2、3…n,

当ξ=1时,表示从袋中取球,取到一号球,试验发生包含的所有事件共有(1+2+3+…+n)=

而满足条件的事件数是1,

∴P(ξ=1)==

以此类推,得到其他变量的概率,

ξ的概率分布为

∴Eξ=1×+2×+3×++n×

=(12+22+32++n2

=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公司试销一种成本单价为500元的新产品,规定试销时销售单价不低于成本单价,又不高于800元.经试销调查,发现销售量y()与销售单价x()之间的关系可近似看作一次函数ykxb(k≠0),函数图象如图所示.

(1)根据图象,求一次函数ykxb(k≠0)的表达式;

(2)设公司获得的毛利润(毛利润=销售总价-成本总价)S元.试问销售单价定为多少时,该公司可获得最大毛利润?最大毛利润是多少?此时的销售量是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于函数,有下列结论:

的定义域为(-1, 1); 的值域为(, );

的图象关于原点成中心对称; 在其定义域上是减函数;

⑤对的定义城中任意都有.

其中正确的结论序号为__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种新产品投放市场一段时间后,经过调研获得了时间(天数)与销售单价(元)的一组数据,且做了一定的数据处理(如表),并作出了散点图(如图)

表中.

(1)根据散点图判断,哪一个更适宜作价格关于时间的回归方程类型?(不必说明理由)

(2)根据判断结果和表中数据,建立关于的回归方程;

(3)若该产品的日销售量(件)与时间的函数关系为),求该产品投放市场第几天的销售额最高?最高为多少元?(结果保留整数)

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某产品每件成本元,售价元,每星期卖出件.如果降低价格,销售量可以增加,即:若商品降低(单位:元,),则一个星期多卖的商品为件.已知商品单件降低元时,一星期多卖出件.(商品销售利润=商品销售收入-商品销售成本)

(1)将一个星期的商品销售利润表示成的函数;

(2)如何定价才能使一个星期的商品销售利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校举办的集体活动中,设计了如下有奖闯关游戏:参赛选手按第一关、第二关、第三关的顺序依次闯关,若闯关成功,分别获得1分、2分、3分的奖励,游戏还规定,当选手闯过一关后,可以选择得到相应的分数,结束游戏;也可以选择继续闯下一关,若有任何一关没有闯关成功,则全部分数都归零,游戏结束。设选手甲第一关、第二关、第三关的概率分别为,选手选择继续闯关的概率均为,且各关之间闯关成功互不影响

(I)求选手甲第一关闯关成功且所得分数为零的概率

(II)设该学生所得总分数为X,X的分布列与数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为圆上一动点,圆心关于轴的对称点为,点分别是线段上的点,且.

(1)求点的轨迹方程;

(2)直线与点的轨迹只有一个公共点,且点在第二象限,过坐标原点且与垂直的直线与圆相交于两点,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,函数

若函数上单调性相反,求的解析式;

,不等式上恒成立,求a的取值范围;

已知,若函数在区间内有且只有一个零点,试确定实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】重庆一中为了增强学生的记忆力和辨识力,组织了一场类似《最强大脑》的赛,两队各由4名选手组成,每局两队各派一名选手,除第三局胜者得2分外,其余各局胜者均得1分,每局的负者得0分.假设每局比赛队选手获胜的概率均为,且各局比赛结果相互独立,比赛结束时队的得分高于队的得分的概率为(

A. B. C. D.

查看答案和解析>>

同步练习册答案