精英家教网 > 高中数学 > 题目详情

【题目】在如图所示的几何体中,四边形是等腰梯形 平面 .

1)求证:

2)求二面角的余弦值.

【答案】(1)证明见解析;(2) .

【解析】试题分析:

(1)由题意结合角的关系可得 由线面垂直的性质可得平面 .

(2)结合(1)的结论可知两两垂直,以为坐标原点,分别以所在的直线为轴, 轴, 轴建立空间直角坐标系,计算可得平面的一个法向量为是平面的一个法向量,据此计算可得二面角的余弦值为.

试题解析:

1)证明:因为四边形是等腰梯形, .所以.

,所以,因此,

平面 ,所以

所以平面;所以.

2)由(1)知, ,同理

平面,因此两两垂直,以为坐标原点,分别以所在的直线为轴, 轴, 轴建立如图的空间直角坐标系,

不妨设,则 ,因此 .

设平面的一个法向量为,则

所以,取,则

由于是平面的一个法向量,

所以二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某大学志愿者协会有6名男同学,4名女同学,在这10名同学中,3名同学来自数学学院,其余7名同学来自物理化学等其他互不相同的七个学院,现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).

(1)求选出的3名同学是来自互不相同学院的概率;

(2)为选出的3名同学中女同学的人数,求随机变量的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)若有两个极值,其中,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业准备推出一种花卉植物用于美化城市环境,为评估花卉的生长水平,现对该花卉植株的高度(单位:厘米)进行抽查,所得数据分组为,据此制作的频率分布直方图如图所示.

1)求出直方图中的值;

2利用直方图估算花卉植株高度的中位数;

3若样本容量为32现准备从高度在的植株中继续抽取2颗做进一步调查,求抽取植株来自同一组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左焦点为,上顶点为为坐标原点,椭圆的离心率的面积为.

(1)求椭圆的方程;

(2)设线段的中点为,经过的直线与椭圆交于两点, ,若点关于轴的对称点在直线上,求直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点与短轴的一个端点是等边三角形的三个顶点,且长轴长为4.

求椭圆E的方程;

A是椭圆E的左顶点,经过左焦点F的直线l与椭圆E交于CD两点,求为坐标原点的面积之差绝对值的最大值.

已知椭圆E上点处的切线方程为T为切点P是直线上任意一点,从P向椭圆E作切线,切点分别为NM,求证:直线MN恒过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,点在抛物线上,直线过点且与抛物线交于两点.

(1)求抛物线的方程及点的坐标

(2)的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

讨论的单调性

若在定义域内总存在使成立的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的函数是奇函数.

1)求的值;

2)判断函数的单调性,并用定义证明;

3)当时,恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案