精英家教网 > 高中数学 > 题目详情
8.甲、乙、丙三名射击运动员射中目标的概率分别为$\frac{1}{2}$、a、a(0<a<1),三人各射击一次,击中目标的次数记为ξ.在概率P(ξ=i)(i=0,1,2,3)中,若P(ξ=1)的值最大,则实数a的取值范围是$(0,\frac{1}{2}]$.

分析 P(ξ)是“ξ个人命中,3-ξ个人未命中”的概率.其中ξ的可能取值为0,1,2,3.则P(ξ=1)-P(ξ=0)≥0,P(ξ=1)-P(ξ=2)≥0,P(ξ=1)-P(ξ=3)≥0.及其0<a<1,解出即可得出.

解答 解:P(ξ)是“ξ个人命中,3-ξ个人未命中”的概率.其中ξ的可能取值为0,1,2,3.
P(ξ=0)=${C}_{1}^{0}•(1-\frac{1}{2})$•${∁}_{2}^{0}(1-a)^{2}$=$\frac{1}{2}(1-a)^{2}$,P(ξ=1)=${∁}_{1}^{1}•\frac{1}{2}{∁}_{2}^{0}(1-a)^{2}$+${∁}_{1}^{0}(1-\frac{1}{2})•{∁}_{2}^{1}a(1-a)$=$\frac{1}{2}(1-{a}^{2})$,
P(ξ=2)=${∁}_{1}^{1}•\frac{1}{2}•{∁}_{2}^{1}a(1-a)$+${∁}_{1}^{0}(1-\frac{1}{2}){∁}_{2}^{2}{a}^{2}$=$\frac{1}{2}(2a-{a}^{2})$,P(ξ=3)=${∁}_{1}^{1}•\frac{1}{2}•{∁}_{2}^{2}$a2=$\frac{1}{2}{a}^{2}$.
P(ξ=1)-P(ξ=0)=$\frac{1}{2}(1-{a}^{2})$-$\frac{1}{2}(1-a)^{2}$=a(1-a),
P(ξ=1)-P(ξ=2)=$\frac{1}{2}(1-{a}^{2})$-$\frac{1}{2}(2a-{a}^{2})$=$\frac{1-2a}{2}$,
P(ξ=1)-P(ξ=3)=$\frac{1}{2}(1-{a}^{2})$-$\frac{1}{2}{a}^{2}$=$\frac{1-2{a}^{2}}{2}$.
由a(1-a)≥0,$\frac{1-2a}{2}$≥0,$\frac{1-2{a}^{2}}{2}$≥0,0<a<1,得$0<a≤\frac{1}{2}$,即a的取值范围是$(0,\frac{1}{2}]$.
故答案为:$(0,\frac{1}{2}]$.

点评 本题考查了相互独立事件与互斥事件的概率计算公式及其性质、不等式的解法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}+x,x≤1}\\{lo{g}_{0.5}x,x>1}\end{array}\right.$若对于任意x∈R,不等式f(x)≤$\frac{{t}^{2}}{4}$-t+1恒成立,则实数t的取值范围是(-∞,1]∪[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.过点C(0,$\sqrt{2}$)的椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,椭圆与x轴交于两点A(a,0),B(-a,0),过点C的直线l与椭圆交于另一点D,并与x轴交于点P,直线AC与BD交于点Q.
(1)求椭圆的方程;
(2)当直线l过椭圆右焦点时,求线段CD的长;
(3)当点P异于点B时,求证:$\overrightarrow{OP}$•$\overrightarrow{OQ}$为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设过曲线f(x)=-ex-x(e为自然对数的底数)上的任意一点的切线l1,总存在过曲线g(x)=mx-3sinx上的一点处的切线l2,使l1⊥l2,则m的取值范围为[-2,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在四棱锥A-BCDE中,底面BCDE是∠BCD=90°的梯形,CD∥BE,AB⊥底面BCDE,BE=4AB=2BC=2CD,点F为AE的中点.
(1)求证:FD∥平面ABC;
(2)求异面直线AC与DE所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.化简:log7[7-2×($\frac{1}{7}$)2]=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知等差数列{an}的首项为c,公差为d,等比数列{bn}的首项为d,公比为c,其中c,d∈Z,且a1<b1<a2
b2<a3
(1)求证:0<c<d,并由b2<a3推导c的值;
(2)若数列{an}共有3n项,前n项的和为A,其后的n项的和为B,再其后的n项的和为C,求$\frac{{B}^{2}-AC}{(A-C)^{2}}$的比值.
(3)若数列{bn}的前n项,前2n项、前3n项的和分别为D,G,H,试用含字母D,G的式子来表示H(即H=f(D,G),且不含字母d)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知抛物线y2=4x的焦点为F,过点F且倾斜角为45°的直线l与抛物线分别交于A、B两点,则|AB|=(  )
A.3B.6C.8D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若命题p:?x∈A,2x∈B,则(  )
A.¬p:?x0∈A,2x0∈BB.¬p:?x0∉A,2x0∈BC.¬p:?x0∈A,2x0∉BD.¬p:?x∉A,2x∉B

查看答案和解析>>

同步练习册答案