精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)是定义在(﹣∞,+∞)上的增函数,实数a使得f(1﹣ax﹣x2)<f(2﹣a)对于任意x∈[0,1]都成立,则实数a的取值范围是(
A.(﹣∞,1)
B.[﹣2,0]
C.(﹣2﹣2 ,﹣2+2
D.[0,1]

【答案】A
【解析】解:法一:由条件得1﹣ax﹣x2<2﹣a对于x∈[0,1]恒成立

令g(x)=x2+ax﹣a+1,只需g(x)在[0,1]上的最小值大于0即可.

g(x)=x2+ax﹣a+1=(x+ 2 ﹣a+1.

①当﹣ <0,即a>0时,g(x)min=g(0)=1﹣a>0,∴a<1,故0<a<1;

②当0≤﹣ ≤1,即﹣2≤a≤0时,g(x)min=g(﹣ )=﹣ ﹣a+1>0,∴﹣2﹣2 <a<﹣2+2 ,故﹣2≤a≤0;

③当﹣ >1,即a<﹣2时,g(x)min=g(1)=2>0,满足,故a<﹣2.

综上a<1.

法二:由1﹣ax﹣x2<2﹣a得(1﹣x)a<x2+1,

∵x∈[0,1],∴1﹣x≥0,

∴①当x=1时,0<2恒成立,此时a∈R;

②当x∈[0,1)时,a< 恒成立.

求当x∈[0,1)时,函数y= 的最小值.

令t=1﹣x(t∈(0,1]),则y= = =t+ ﹣2,

而函数y=t+ ﹣2是(0,1]上的减函数,所以当且仅当t=1,即x=0时,ymin=1.

故要使不等式在[0,1)上恒成立,只需a<1,

由①②得a<1.

故选:A

解法一:由条件得1﹣ax﹣x2<2﹣a对于x∈[0,1]恒成立,令g(x)=x2+ax﹣a+1,只需g(x)在[0,1]上的最小值大于0即可,分类讨论,求最值即可求出实数a的取值范围;

解法二:由1﹣ax﹣x2<2﹣a,得(1﹣x)a<x2+1,对x讨论,再分离参数,求最值,即可求出实数a的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】有一块半径为 是正常数)的半圆形空地,开发商计划征地建一个矩形的游泳池 和其附属设施,附属设施占地形状是等腰 ,其中 为圆心, 在圆的直径上, 在半圆周上,如图.设 ,征地面积为 ,当 满足 取得最大值时,开发效果最佳,开发效果最佳的角 的最大值分别为( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设M=10a2+81a+207,P=a+2,Q=26﹣2a,若将lgM,lgQ,lgP适当排序后可构成公差为1的等差数列{an}的前三项. (Ⅰ)求a的值及{an}的通项公式;
(Ⅱ)记函数 的图像在x轴上截得的线段长为bn , 设 ,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的首项为1,前n项和Sn与an之间满足an= (n≥2,n∈N*
(1)求证:数列{ }是等差数列;
(2)求数列{an}的通项公式;
(3)设存在正整数k,使(1+S1)(1+S1)…(1+Sn)≥k 对于一切n∈N*都成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点(1,﹣2)和( ,0)在直线l:ax﹣y﹣1=0(a≠0)的两侧,则直线l的倾斜角的取值范围是(
A.(
B.(
C.(
D.(0, )∪( ,π)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l的方程为(2﹣m)x+(2m+1)y+3m+4=0,其中m∈R.
(1)求证:直线l恒过定点;
(2)当m变化时,求点P(3,1)到直线l的距离的最大值;
(3)若直线l分别与x轴、y轴的负半轴交于A,B两点,求△AOB面积的最小值及此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线y2=4x的焦点为F,过点(0,3)的直线与抛物线交于A,B两点,线段AB的垂直平分线交x轴于点D,若|AF|+|BF|=6,则点D的横坐标为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}满足an>0,n=1,2,…,且a5a2n5=22n(n≥3),则当n≥1时,log2a1+log2a3+…+log2a2n1=(
A.n(2n﹣1)
B.(n+1)2
C.n2
D.(n﹣1)2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列{an}中,a1=1an+1= ,n∈N*.
(1)求证数列 为等比数列.
(2)求数列{an}的前n项和Sn

查看答案和解析>>

同步练习册答案