精英家教网 > 高中数学 > 题目详情
6.用简单随机抽样的方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a“第一次被抽到”的可能性,“第二次被抽到”的可能性分别是(  )
A.$\frac{1}{10}$,$\frac{1}{10}$B.$\frac{3}{10}$,$\frac{1}{5}$C.$\frac{1}{5}$,$\frac{3}{10}$D.$\frac{3}{10}$,$\frac{3}{10}$

分析 在抽样过程中,个体a每一次被抽中的概率是相等的,结合已知中的总体容量,可得答案.

解答 解:在抽样过程中,个体a每一次被抽中的概率是相等的,
∵总体容量为10,
故个体a“第一次被抽到”的可能性,“第二次被抽到”的可能性均为$\frac{1}{10}$,
故选:A

点评 本题考查的知识点是简单随机抽样,正确理解简单随机抽样中的等可能性,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.如图所示,在三棱柱ABC-A1B1C1中,M是BB1的中点,化简下列各式,并在图中标出化简得到的向量:
(1)$\overrightarrow{CB}$+$\overrightarrow{B{A}_{1}}$;
(2)$\overrightarrow{AC}$+$\overrightarrow{CB}$+$\frac{1}{2}$$\overrightarrow{A{A}_{1}}$;
(3)$\overrightarrow{A{A}_{1}}$-$\overrightarrow{AC}$-$\overrightarrow{CB}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=ln(x2-2x-3)的定义域为(  )
A.(-1,3)B.(-∞,-1)∪(3,+∞)C.[-3,1]D.(-∞,-1]∪[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{6}}{3}$,右焦点为(2$\sqrt{2}$,0),过点P(-2,1)斜率为1的直线l与椭圆C交于A,B两点.
(1)求椭圆C的方程;
(2)求弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{m}$=1的离心率e=$\frac{1}{2}$,则m的值为(  )
A.3B.1C.16或1D.$\frac{16}{3}$或3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.“x-3=0”是“(x-3)(x+4)=0”的(  )条件.
A.充要B.充分不必要
C.必要不充分D.既不充分又不必要

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知椭圆$\frac{x^2}{16}+\frac{y^2}{9}$=1及以下3个函数:①f(x)=x;②f(x)=sinx;③f(x)=xsinx,其中函数图象能等分该椭圆面积的函数个数有2个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\frac{{e}^{x}-1}{{e}^{x}+1}$.
(1)判断f(x)的奇偶性;
(2)判断f(x)在R上的单调性,并探究是否存在实数t,使不等式f(x)+f(x2-t2)≥0对一切x∈[1,2]恒成立?若存在,求出t的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.双曲线$\frac{x^2}{3}$-$\frac{y^2}{4}$=1的渐近线方程是y=±$\frac{2\sqrt{3}}{3}$x.

查看答案和解析>>

同步练习册答案