精英家教网 > 高中数学 > 题目详情
9.长方体ABCD-A1B1C1D1中,AB=4,AA1=3,BC=2,P为A1B1中点,M,N,Q分别为棱AB,AA1,CC1上的点,且AB=4MB,AA1=3AN,CC1=3CQ.
(Ⅰ)求证:PQ⊥平面PD1N;
(Ⅱ)求二面角P-D1M-N的余弦值.

分析 (Ⅰ)以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能证明PQ⊥平面PD1N.
(Ⅱ)求出平面PD1M的法向量和平面D1MN的法向量,利用向量法能求出二面角P-D1M-N的余弦值.

解答 证明:(Ⅰ)以D为原点,DA为x轴,DC为y轴,DD1为z轴,如图建立空间直角坐标系,
则P(2,2,3),Q(0,4,1),D1(0,0,3),M(2,3,0),N(2,0,1),
$\overrightarrow{PQ}$=(-2,2,-2),$\overrightarrow{{D}_{1}P}$=(2,2,0),$\overrightarrow{{D}_{1}N}$=(2,0,-2),
∵$\overrightarrow{PQ}•\overrightarrow{{D}_{1}P}$=0,$\overrightarrow{PQ}•\overrightarrow{{D}_{1}N}$=0,
∴PQ⊥D1P,PQ⊥D1N,
∵D1P∩D1N=D1,∴PQ⊥平面PD1N.
解:(Ⅱ)$\overrightarrow{{D}_{1}M}$=(2,3,-3),$\overrightarrow{{D}_{1}P}$=(2,2,0),$\overrightarrow{{D}_{1}N}$=(2,0,-2),
设平面PD1M的法向量为$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{{D}_{1}M}•\overrightarrow{n}=2x+3y-3z=0}\\{\overrightarrow{{D}_{1}P}•\overrightarrow{n}=2x+2y=0}\end{array}\right.$,取x=3,得平面PD1M的一个法向量为$\overrightarrow{n}$=(3,-3,-1),
设平面D1MN的法向量为$\overrightarrow{m}$=(a,b,c),
则$\left\{\begin{array}{l}{\overrightarrow{{D}_{1}M}•\overrightarrow{m}=2a+3b-3c=0}\\{\overrightarrow{{D}_{1}N}•\overrightarrow{m}=2a-2c=0}\end{array}\right.$,取a=3,得$\overrightarrow{m}$=(3,1,3),
∴cos<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{3}{19}$,
由图知二面角P-D1M-N的平面角为钝角,
∴二面角P-D1M-N的余弦值为-$\frac{3}{19}$.

点评 本题考查线面垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.在△ABC中,A=60°,B=45°,a=1,则最短边的边长等于(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{6}}{3}$C.$\frac{\sqrt{6}}{2}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知在${(\frac{1}{x}+2\root{3}{x})^n}$的展开式中二项式系数和为256.
(1)求展开式中常数项;
(2)求展开式中二项式系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,已知三棱柱ABC-A1B1C1中,CA=CB,侧面AA1B1B是菱形,且∠ABB1=60°.
(I)求证:AB⊥B1C;
(Ⅱ)若AB=B1C=2,BC=$\sqrt{2}$,求二面角B-AB1-C1的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图,在二面角A-CD-B中,BC⊥CD,BC=CD=2,点A在直线AD上运动,满足AD⊥CD,AB=3.现将平面ADC沿着CD进行翻折,在翻折的过程中,线段AD长的取值范围是$[\sqrt{5}-2,\sqrt{5}+2]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.投掷两颗质地均匀的骰子,则向上的点数之和为5的概率等于$\frac{1}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数f(x)=(-2)x-x+1.当x依次取前6个自然数时,f(x)的函数值列是{-2,3,-10,13,-36,59}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在极坐标系中,与圆ρ=4sinθ相切的一条直线的方程为(  )
A.ρcosθ=$\frac{1}{2}$B.ρcosθ=2C.ρ=4sin(θ+$\frac{π}{3}$)D.ρ=4sin(θ-$\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设集合A={x|y=ln(2x-1)},B={x|-1<x<3},则A∩B=(  )
A.(-1,3)B.(1,3)C.(-1,$\frac{1}{2}$)D.($\frac{1}{2}$,3)

查看答案和解析>>

同步练习册答案