分析 (Ⅰ)以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能证明PQ⊥平面PD1N.
(Ⅱ)求出平面PD1M的法向量和平面D1MN的法向量,利用向量法能求出二面角P-D1M-N的余弦值.
解答 证明:(Ⅰ)以D为原点,DA为x轴,DC为y轴,DD1为z轴,如图建立空间直角坐标系,
则P(2,2,3),Q(0,4,1),D1(0,0,3),M(2,3,0),N(2,0,1),
$\overrightarrow{PQ}$=(-2,2,-2),$\overrightarrow{{D}_{1}P}$=(2,2,0),$\overrightarrow{{D}_{1}N}$=(2,0,-2),
∵$\overrightarrow{PQ}•\overrightarrow{{D}_{1}P}$=0,$\overrightarrow{PQ}•\overrightarrow{{D}_{1}N}$=0,
∴PQ⊥D1P,PQ⊥D1N,
∵D1P∩D1N=D1,∴PQ⊥平面PD1N.
解:(Ⅱ)$\overrightarrow{{D}_{1}M}$=(2,3,-3),$\overrightarrow{{D}_{1}P}$=(2,2,0),$\overrightarrow{{D}_{1}N}$=(2,0,-2),
设平面PD1M的法向量为$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{{D}_{1}M}•\overrightarrow{n}=2x+3y-3z=0}\\{\overrightarrow{{D}_{1}P}•\overrightarrow{n}=2x+2y=0}\end{array}\right.$,取x=3,得平面PD1M的一个法向量为$\overrightarrow{n}$=(3,-3,-1),
设平面D1MN的法向量为$\overrightarrow{m}$=(a,b,c),
则$\left\{\begin{array}{l}{\overrightarrow{{D}_{1}M}•\overrightarrow{m}=2a+3b-3c=0}\\{\overrightarrow{{D}_{1}N}•\overrightarrow{m}=2a-2c=0}\end{array}\right.$,取a=3,得$\overrightarrow{m}$=(3,1,3),
∴cos<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{3}{19}$,
由图知二面角P-D1M-N的平面角为钝角,
∴二面角P-D1M-N的余弦值为-$\frac{3}{19}$.
点评 本题考查线面垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{6}}{3}$ | C. | $\frac{\sqrt{6}}{2}$ | D. | $\frac{\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ρcosθ=$\frac{1}{2}$ | B. | ρcosθ=2 | C. | ρ=4sin(θ+$\frac{π}{3}$) | D. | ρ=4sin(θ-$\frac{π}{3}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-1,3) | B. | (1,3) | C. | (-1,$\frac{1}{2}$) | D. | ($\frac{1}{2}$,3) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com