精英家教网 > 高中数学 > 题目详情
函数f(x)=
1-x
2x
+lnx的导函数是f′(x),则f′(1)=
 
考点:导数的运算
专题:导数的概念及应用
分析:利用基本函数求导公式,求出导数,然后代入求值.
解答: 解:因为数f(x)=
1-x
2x
+lnx
所以f′(x)=(
1-x
2x
+lnx)′=(
1-x
2x
)′+(lnx)′=
-2x-2(1-x)
4x2
+
1
x
=
-1
2x2
+
1
x

所以f′(1)=
-1
2
+1=
1
2

故答案为:
1
2
点评:本题考查了导数的求法;属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
e1
e2
是互相垂直的两个单位向量,若向量
a
=t•
e1
+
e2
与向量
b
=
e1
+t•
e2
是的夹角是钝角,则实数t的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=2cos2x-
3
sin2x(x∈R)的最小正周期和最小值分别为(  )
A、2π,3B、2π,-1
C、π,3D、π,-1

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=sin4x+cos4x是(  )
A、最小正周期为
π
2
,值域为[
2
2
,1]的函数
B、最小正周期为
π
4
,值域为[
2
2
,1]的函数
C、最小正周期为
π
2
,值域为[
1
2
,1]的函数
D、最小正周期为
π
4
,值域为[
1
2
,1]的函数

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(2x+φ)(其中φ为实数),若f(x)≤|f(
π
6
)|对x∈r恒成立,且sinφ<0,则f(x)的单调递增区间是
 
;(k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:

将函数y=sin2x的图象向左平移
π
4
个单位,再向上平移1个单位,所得图象的函数解析式是(  )
A、y=1+sin(2x+
π
4
B、y=cos2x-1
C、y=-cos2x+1
D、y=cos2x+1

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在[-3,0]∪[2,3]上的函数y=f(x)的图象如图所示,若直线y=a与y=f(x)的图象有两个公共点,则实数a的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在数列{an}中,a1=1,当n≥2时,其前n项和Sn满足Sn2=an(Sn-
1
2
)

(Ⅰ) 求Sn的表达式;
(Ⅱ) 设bn=
Sn
2n+1
,数列{bn}的前n项和Tn.证明Tn
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集为R,集合M={x|log2(x-1)<1},则∁RM=(  )
A、[3,+∞)
B、(-∞,1]∪[2,+∞)
C、(-∞,1]∪[3,+∞)
D、(-∞,0]∪[2,+∞)

查看答案和解析>>

同步练习册答案