精英家教网 > 高中数学 > 题目详情

【题目】在正方体ABCD-A1B1C1D1中,点O是四边形ABCD的中心,关于直线A1O,下列说法正确的是( )

A. A1O∥DCB. A1O⊥BCC. A1O∥平面BCDD. A1O⊥平面ABD

【答案】C

【解析】

推导出A1DB1CODB1D1,从而平面A1DO∥平面B1CD1,由此能得到A1O∥平面B1CD1.再利用空间线线、线面的位置关系排除其它选项即可.

∵由异面直线的判定定理可得A1O与DC是异面直线,故A错误;

假设A1O⊥BC,结合A1A⊥BC可得BC⊥A1ACC1,则可得BC⊥AC,显然不正确,故假设错误,即B错误;

∵在正方体ABCDA1B1C1D1中,点O是四边形ABCD的中心,

A1DB1CODB1D1

A1DDODB1D1B1CB1

∴平面A1DO∥平面B1CD1

A1O平面A1DO,∴A1O∥平面B1CD1.故C正确;

又A1A⊥平面ABD,过一点作平面ABD的垂线有且只有一条,则D错误,

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数的图象与函数的图象关于直线对称,则关于函数以下说法正确的是( )

A. 最大值为1,图象关于直线对称B. 上单调递减,为奇函数

C. 上单调递增,为偶函数D. 周期为,图象关于点对称

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,是边长为2的正三角形,的中点,的中点.

(1)证明:平面

(2)若,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知线段AB的端点B的坐标是(42),端点A在圆C:(x+22+y216上运动.

1)求线段AB的中点的轨迹方程H

2)判断(1)中轨迹H与圆C的位置关系.

3)过点P32)作两条相互垂直的直线MNEF,分别交(1)中轨迹HMNEF,求四边形MNFE面积的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列4个命题:

①若函数上有零点,则一定有

②函数既不是奇函数又不是偶函数;

③若函数的值域为,则实数的取值范围是

④若函数满足条件,则的最小值为.

其中正确命题的序号是:_______.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论函数的单调性

(2)函数,且.若在区间(0,2)内有零点,求实数m的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,直线的极坐标方程为.

(1)求曲线与直线的直角坐标方程.

(2)直线轴的交点为,与曲线的交点为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点分别为,点在椭圆上,且的周长为

(Ⅰ)求椭圆的方程;

(Ⅱ)若点的坐标为,不过原点的直线与椭圆相交于两点,设线段的中点为,点到直线的距离为,且三点共线,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】423日是世界读书日,某中学在此期间开展了一系列的读书教育活动,为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查,下图是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,若将日均课外阅读时间不低于60分钟的学生称为读书谜,低于60分钟的学生称为非读书谜”.

1)求的值并估计全校3000名学生中读书谜大概有多少名?(将频率视为概率)

2)根据已知条件完成下面的列联表,并据此判断是否有的把握认为读书谜与性别有关?

非读书迷

读书迷

合计

40

25

合计

:.

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

同步练习册答案