【题目】在正方体ABCD-A1B1C1D1中,点O是四边形ABCD的中心,关于直线A1O,下列说法正确的是( )
A. A1O∥DCB. A1O⊥BCC. A1O∥平面BCDD. A1O⊥平面ABD
【答案】C
【解析】
推导出A1D∥B1C,OD∥B1D1,从而平面A1DO∥平面B1CD1,由此能得到A1O∥平面B1CD1.再利用空间线线、线面的位置关系排除其它选项即可.
∵由异面直线的判定定理可得A1O与DC是异面直线,故A错误;
假设A1O⊥BC,结合A1A⊥BC可得BC⊥A1ACC1,则可得BC⊥AC,显然不正确,故假设错误,即B错误;
∵在正方体ABCD﹣A1B1C1D1中,点O是四边形ABCD的中心,
∴A1D∥B1C,OD∥B1D1,
∵A1D∩DO=D,B1D1∩B1C=B1,
∴平面A1DO∥平面B1CD1,
∵A1O平面A1DO,∴A1O∥平面B1CD1.故C正确;
又A1A⊥平面ABD,过一点作平面ABD的垂线有且只有一条,则D错误,
故选:C.
科目:高中数学 来源: 题型:
【题目】函数的图象与函数的图象关于直线对称,则关于函数以下说法正确的是( )
A. 最大值为1,图象关于直线对称B. 在上单调递减,为奇函数
C. 在上单调递增,为偶函数D. 周期为,图象关于点对称
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知线段AB的端点B的坐标是(4,2),端点A在圆C:(x+2)2+y2=16上运动.
(1)求线段AB的中点的轨迹方程H.
(2)判断(1)中轨迹H与圆C的位置关系.
(3)过点P(3,2)作两条相互垂直的直线MN,EF,分别交(1)中轨迹H于M,N和E,F,求四边形MNFE面积的最大值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列4个命题:
①若函数在上有零点,则一定有;
②函数既不是奇函数又不是偶函数;
③若函数的值域为,则实数的取值范围是;
④若函数满足条件,则的最小值为.
其中正确命题的序号是:_______.(写出所有正确命题的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,直线的极坐标方程为.
(1)求曲线与直线的直角坐标方程.
(2)直线与轴的交点为,与曲线的交点为,,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的两个焦点分别为、,,点在椭圆上,且的周长为
(Ⅰ)求椭圆的方程;
(Ⅱ)若点的坐标为,不过原点的直线与椭圆相交于,两点,设线段的中点为,点到直线的距离为,且,,三点共线,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】4月23日是“世界读书日”,某中学在此期间开展了一系列的读书教育活动,为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查,下图是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,若将日均课外阅读时间不低于60分钟的学生称为“读书谜”,低于60分钟的学生称为“非读书谜”.
(1)求的值并估计全校3000名学生中读书谜大概有多少名?(将频率视为概率)
(2)根据已知条件完成下面的列联表,并据此判断是否有的把握认为“读书谜”与性别有关?
非读书迷 | 读书迷 | 合计 | |
男 | 40 | ||
女 | 25 | ||
合计 |
附:,.
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com