精英家教网 > 高中数学 > 题目详情
(2012•房山区一模)已知数列{an}的前n项和为Sn,对一切正整数n,点Pn(n,Sn)都在函数f(x)=x2+2x的图象上,记an与an+1的等差中项为kn
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=2knan,求数列{bn}的前n项和Tn
(Ⅲ)设集合A={x|x=kn,n∈N*},B={x|x=2an,n∈N*},等差数列{cn}的任意一项cn∈A∩B,其中c1是A∩B中的最小数,且110<c10<115,求{cn}的通项公式.
分析:(I)根据点Pn(n,Sn)都在函数f(x)=x2+2x的图象上,可得Sn=n2+2n(n∈N*),再写一式,两式相减,即可求得数列{an}的通项公式;
(II)先确定数列的通项,再利用错位相减法求数列的和;
(III)先确定A∩B=B,再确定{cn}是公差为4的倍数的等差数列,利用110<c10<115,可得c10=114,由此可得{cn}的通项公式.
解答:解:(I)∵点Pn(n,Sn)都在函数f(x)=x2+2x的图象上,∴Sn=n2+2n(n∈N*)
当n≥2时,an=Sn-Sn-1=2n+1.…(2分)
当n=1时,a1=S1=3满足上式,
所以数列{an}的通项公式为an=2n+1.…(3分)
(II)∵kn为an与an+1的等差中项
kn=
an+an+1
2
=
2n+1+2(n+1)+1
2
=2n+2
…(4分)
bn=2knan=4•(2n+1)•4n
Tn=4×3×41+4×5×42+4×7×43+…+4×(2n+1)×4n
由①×4,得4Tn=4×3×42+4×5×43+4×7×44+…+4×(2n+1)×4n+1
①-②得:-3Tn=4[3×4+2×(42+43+…+4n)-(2n+1)×4n+1]=4[3×4+2×
42(1-4n-1)
1-4
-(2n+1)×4n+1]

Tn=
6n+1
9
4n+2-
16
9
…(8分)
(III)∵A={x|x=kn,n∈N*},B={x|x=2an,n∈N*}
∴A∩B=B
∵cn∈A∩B,c1是A∩B中的最小数,∴c1=6.
∵{cn}是公差为4的倍数的等差数列,∴c10=4m+6(m∈N*).…(10分)
又∵110<c10<115,∴
110<4m+6<115
m∈N*
,解得m=27.
所以c10=114,
设等差数列的公差为d,则d=
c10-c1
10-1
=
114-6
9
=12
,…(12分)
∴cn=6+(n+1)×12=12n-6,
∴cn=12n-6.…(13分)
点评:本题考查数列与函数的关系,考查数列的通项与求和,正确运用求和公式是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•房山区一模)已知△ABC中,内角A,B,C的对边分别为a,b,c,且cosA=
2
5
5
cosB=
3
10
10

(Ⅰ)求cos(A+B)的值;
(Ⅱ)设a=
10
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区一模)如果在一周内安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余两所学校均只参观一天,那么不同的安排方法共有
120
120
种.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区一模)下列函数中,既是偶函数又在(0,+∞)单调递增的函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区一模)一个几何体的三视图如图所示,则这个几何体的体积为
2
3
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区一模)已知椭圆G的中心在坐标原点,焦点在x轴上,一个顶点为A(0,-1),离心率为
6
3

(I)求椭圆G的方程;
(II)设直线y=kx+m与椭圆相交于不同的两点M,N.当|AM|=|AN|时,求m的取值范围.

查看答案和解析>>

同步练习册答案