精英家教网 > 高中数学 > 题目详情
已知命题p:实数m满足方程
x2
m-3a
+
y2
m-4a
=1(a>0)表示焦点在x轴上的双曲线,命题q:实数m满足方程
x2
m-1
+
y2
2-m
=1表示焦点在y轴上的椭圆,且p是q的充分不必要条件,求实数a的取值范围.
考点:必要条件、充分条件与充要条件的判断
专题:圆锥曲线的定义、性质与方程,简易逻辑
分析:根据双曲线和椭圆的简单性质,求出命题p,q中m的取值范围,进而结合充要条件的定义,可得答案.
解答: 解:若方程
x2
m-3a
+
y2
m-4a
=1(a>0)表示焦点在x轴上的双曲线,
则m-3a>0,且m-4a<0,(a>0),
解得3a<m<4a,
即p:3a<m<4a.
若方程
x2
m-1
+
y2
2-m
=1表示焦点在y轴上的椭圆,
则2-m>m-1>0,
解得1<m<
3
2

即q:1<m<
3
2

若q是p的必要不充分条件,
则p⇒q,
从而有:
3a≥1
4a≤
3
2

解得
1
3
≤a≤
3
8
点评:判断充要条件的方法是:
①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;
②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;
③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;
④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.
⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a,b是实数,1和-1是函数f(x)=x3+ax2+bx的两个极值点.
(1)求函数f(x)在[-2,2]上的最值;
(2)设函数g(x)的导函数g′(x)=f(x)+3x+8,求g(x)的极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域是(0,+∞),且满足f(xy)=f(x)+f(y),f(
1
2
)=1
如果对于0<x<y,都有f(x)>f(y),不等式f(-x)+f(3-x)≥-2的解集为(  )
A、[-1,0)∪(3,4]
B、[-1,0)
C、(3,4]
D、[-1,4]

查看答案和解析>>

科目:高中数学 来源: 题型:

设关于x的函数f(x)=
1
x2-2x-3
的定义域为集合A,函数g(x)=-x-a(-4≤x≤0)的值域为集合B.
(1)求集合A,B;
(2)若集合A,B满足A∪B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若θ是第二象限角,cos
θ
2
-sin
θ
2
=
1-sinθ
,则角
θ
2
的终边所在的象限是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=2sin(2x+
π
3
)-1,x∈[0,
π
3
]的值域为
 
,并且取最大值时x的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(2x+1)=6x+5,则f(x)的解析式是(  )
A、3x+2B、3x+1
C、3x-1D、3x+4

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
1
x+1
+
4-x2
的定义域为(  )
A、[-2,0)∪(0,2]
B、(-1,0)∪(0,2]
C、[-2,2]
D、(-1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

设α是第二象限角,p(x,4)为其终边上的一点,且cosα=
1
5
x,则tan2α=(  )
A、
24
7
B、-
24
7
C、
12
7
D、-
12
7

查看答案和解析>>

同步练习册答案