精英家教网 > 高中数学 > 题目详情

【题目】在水平地面上的不同两点处栽有两根笔直的电线杆,假设它们都垂直于地面,则在水平地面上视它们上端仰角相等的点的轨迹可能是(

①直线 ②圆 ③椭圆 ④抛物线

A.①②B.①③C.①②③D.②④

【答案】A

【解析】

讨论两根电线杆是否相等.当两个电线杆的高度相等时,到上端仰角相等的点在地面上为两根电线底部连线的垂直平分线.当两个电线杆的高度不同时,在底面建立平面直角坐标系,可根据轨迹方程的求法求解.

当两根电线杆的高度相等时,因为在水平地面上视它们上端仰角相等

所以由垂直平分线的定义可知,的轨迹为两根电线底部连线的垂直平分线,即轨迹为一条直线

当两根电线的高度不同时,如下图所示:

在地面上以B为原点,BD所在直线为

,,

由题意可知,,

所以满足,

由两点间距离公式,代入可得

化简可得,

二次项的系数相同,且满足

所以此时动点的轨迹为圆

综上可知,的轨迹可能是直线,也可能是圆

故选:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】用计算机生成随机数表模拟预测未来三天降雨情况,规定123表示降雨,456789表示不降雨,根据随机生成的10组三位数:654 439 565 918 288 674 374 968 224 337,则预计未来三天仅有一天降雨的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线上一点到焦点的距离.

(1)求抛物线的方程;

(2)过点引圆的两条切线,切线与抛物线的另一交点分别为,线段中点的横坐标记为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的导函数.

1)若,求的值;

2)设.①若函数在定义域上单调递增,求的取值范围;②若函数在定义域上不单调,试判定的零点个数,并给出证明过程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以原点为极点,x轴正半轴为极轴建立极坐标系,并在两坐标系中取相同的长度单位.已知曲线C的极坐标方程为,直线l的参数方程为,(t为参数).

1)求直线l的普通方程和曲线C的直角坐标方程;

2)若直线l与曲线C交于AB两点,,且,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,若关于的不等式恒成立,求的取值范围;

(2)当时,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某快递网点收取快递费用的标准是重量不超过的包裹收费10元,重量超过的包裹,除收费10元之外,超过的部分,每超出(不足,按计算)需要再收费5元.该公司近60天每天揽件数量的频率分布直方图如下图所示(同一组数据用该区间的中点值作代表).

1)求这60天每天包裹数量的平均数和中位数;

2)该快递网点负责人从收取的每件快递的费用中抽取5元作为工作人员的工资和网点的利润,剩余的作为其他费用.已知该网点有工作人员3人,每人每天工资100元,以样本估计总体,试估计该网点每天的利润有多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图、90后从事互联网行业者岗位分布条形图,则下列结论中一定正确的是(

(注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生).

A.互联网行业从业人员中80前占3%以上

B.互联网行业90后中,从事设计岗位的人数比从事市场岗位的人数要多

C.互联网行业中从事技术岗位的人数超过总人数的20%

D.互联网行业中从事技术岗位的人数90后比80后多

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数在区间上存在零点,则实数的取值范围为( )

A. B. C. D.

查看答案和解析>>

同步练习册答案