精英家教网 > 高中数学 > 题目详情

(14分)已知函数f(x)=在定义域内为奇函数,

且f(1)=2,f()=;

(1)确定函数的解析式;

(2)用定义证明f(x)在[1,+∞)上是增函数;

第6页(共6页)

 
(3)解不等式f(t2+1)+f(-3+3t-2t2)<0.

解:(1)∵函数f(x)=在定义域内为奇函数∴b=0,f(1)=2,f()=

代入解方程组的a=1,c=1∴f(x)=x+-----------4分

(2)设x1,x2是区间(1,+∞)内的任意两个实数,且x1<x2,

 ⊿x=x2-x1>0

⊿y=f(x2)-f(x1)=x2-x1+=x2-x1+=(x2-x1)

 ∵⊿x=x2-x1>0∵x1,x2是区间(1,+∞)内∴>0

∴⊿y>0∴f(x)在[1,+∞)上是增函数----------9分

(3) 由f(t2+1)+f(3+3t-2t2)<0.得f(t2+1)<-f(3+3t-2t2)∵f(x)为奇函数∴得f(t2+1)<f(3-3t+2t2)

又t2+1≥1,2t2-3t+3>1,f(x)在[1,+∞)上是增函数

∴1≤t2+1<3-3t+2t2得{t|t>2或t<1}---14分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
-k
x
在(0,+∞)上单调递增,则实数k的取值范围是(  )
A、(-∞,0)
B、(0,+∞)
C、(1,+∞)
D、(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
x
在区间[1,2]上的最大值为A,最小值为B,则A-B=(  )
A、
1
2
B、-
1
2
C、1
D、-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ax
在x=1处的导数为-2,则实数a的值是
2
2

查看答案和解析>>

科目:高中数学 来源:2013-2014学年江西赣州四所重点中学高三上学期期末联考理数学试卷(解析版) 题型:解答题

已知函数f(x)=在x=0,x=处存在极值。

(Ⅰ)求实数a,b的值;

(Ⅱ)函数y=f(x)的图象上存在两点A,B使得△AOB是以坐标原点O为直角顶点的直角三角形,且斜边AB的中点在y轴上,求实数c的取值范围;

(Ⅲ)当c=e时,讨论关于x的方程f(x)=kx(k∈R)的实根个数。

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省盐城市高三上学期期中考数学试卷(解析版) 题型:填空题

已知函数f(x)=2sinx在[-]上单调递增,则正实数的取值范围是_____

 

查看答案和解析>>

同步练习册答案