精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)若存在极大值,证明:

2)若关于的不等式在区间上恒成立,求的取值范围.

【答案】1)证明见解析;(2

【解析】

1.(x∈(0+∞)).对a分类讨论,即可得出单调性极值.进而证明结论.

2)令hx=fx+ex-1-1=lnx-ax+a+ex-1-1x[1+∞),h1=0,对a分类讨论,利用导数研究函数的单调性、极值与最值即可得出.

1

时,单调递增,不存在极大值,

所以上单调递增,在上单调递减,

的极大值为

上单调递减,在上单调递增,

所以的极大值大于等于0

2)设

所以单调递增,

上单调递减,在上单调递增,

,则恒成立,

此时,函数上单调递增,,满足条件.

,则,所以存在使得

即在内,有上单调递减,

不满足条件.

综上,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】现代足球运动是世上开展得最广泛、影响最大的运动项目,有人称它为世界第一运动.早在2000多年前的春秋战国时代,就有了一种球类游戏蹴鞠,后来经过阿拉伯人传到欧洲,发展成现代足球.18631026日,英国人在伦敦成立了世界上第一个足球运动组织——英国足球协会,并统一了足球规则.人们称这一天是现代足球的诞生日.如图所示,足球表面是由若干黑色正五边形和白色正六边形皮围成的,我们把这些正五边形和正六边形都称为足球的面,任何相邻两个面的公共边叫做足球的棱.已知足球表面中的正六边形的面为20个,则该足球表面中的正五边形的面为______个,该足球表面的棱为______条.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,已知倾斜角为的直线过点,以坐标原点为极点,轴的正半轴为极轴建立极坐标系.曲线的极坐标方程为,直线与曲线分别交于两点.

1)写出直线的参数方程和曲线的直角坐标方程;

2)若,求直线的斜率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线C1a0b0)的左右焦点为F1F2过点F1的直线l与双曲线C的左支交于AB两点,BF1F2的面积是AF1F2面积的三倍,∠F1AF290°,则双曲线C的离心率为(  )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某农科站技术员为了解某品种树苗的生长情况,在该批树苗中随机抽取一个容量为100的样本,测量树苗高度(单位:).经统计,高度在区间内,将其按分成6组,制成如图所示的频率分布直方图,其中高度不低于的树苗为优质树苗.

附:

,其中

1)求频率分布直方图中的值;

2)已知所抽取的这100棵树苗来自于甲、乙两个地区,部分数据如下列联表所示,将列联表补充完整,并根据列联表判断是否有%的把握认为优质树苗与地区有关?

甲地区

乙地区

合计

优质树苗

5

非优质树苗

25

合计

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某工厂每天固定成本是4万元,每生产一件产品成本增加100元,工厂每件产品的出厂价定为元时,生产件产品的销售收入是(元),为每天生产件产品的平均利润(平均利润=总利润/总产量).销售商从工厂每件元进货后又以每件元销售, ,其中为最高限价 为销售乐观系数,据市场调查, 是由当 的比例中项时来确定.

(1)每天生产量为多少时,平均利润取得最大值?并求的最大值;

(2)求乐观系数的值;

(3)若,当厂家平均利润最大时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,下述四个结论:

是偶函数;

的最小正周期为

的最小值为0

上有3个零点

其中所有正确结论的编号是(

A.①②B.①②③C.①③④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆 (a>b>0)的左焦点为F上顶点为B. 已知椭圆的离心率为A的坐标为.

I)求椭圆的方程;

II)设直线l 与椭圆在第一象限的交点为Pl与直线AB交于点Q. (O为原点) k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱柱的底面是菱形,平面,是侧棱上的点

1)证明:平面;

2)若的中点,求四棱锥的体积.

查看答案和解析>>

同步练习册答案