精英家教网 > 高中数学 > 题目详情
(2013•牡丹江一模)选修4-1:几何证明选讲
如图,已知四边形ABCD内接于ΘO,且AB是的ΘO直径,过点D的ΘO的切线与BA的延长线交于点M.
(1)若MD=6,MB=12,求AB的长;
(2)若AM=AD,求∠DCB的大小.
分析:(1)利用MD为⊙O的切线,由切割线定理以及已知条件,求出AB即可.
(2)推出∠AMD=∠ADM,连接DB,由弦切角定理知,∠ADM=∠ABD,通过AB是⊙O的直径,四边形ABCD是圆内接四边形,对角和180°,求出∠DCB即可.
解答:选修4-1:几何证明选讲
解:(1)因为MD为⊙O的切线,由切割线定理知,
MD2=MA•MB,又MD=6,MB=12,MB=MA+AB,…(2分),
所以MA=3,AB=12-3=9.…(5分)
(2)因为AM=AD,所以∠AMD=∠ADM,连接DB,又MD为⊙O的切线,
由弦切角定理知,∠ADM=∠ABD,(7分)
又因为AB是⊙O的直径,所以∠ADB为直角,即∠BAD=90°-∠ABD.
又∠BAD=∠AMD+∠ADM=2∠ABD,
于是90°-∠ABD=2∠ABD,所以∠ABD=30°,所以∠BAD=60°.…(8分)
又四边形ABCD是圆内接四边形,所以∠BAD+∠DCB=180°,
所以∠DCB=120°…(10分)
点评:本题考查圆的内接多边形,切割线定理的应用,基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•牡丹江一模)在球O内任取一点P,使得P点在球O的内接正方体中的概率是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•牡丹江一模)复数 (1+i)z=i( i为虚数单位),则
.
z
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•牡丹江一模)已知函数f(x)=
1+1nx
x

(1)若函数f(x)在区间(a,a+
1
3
)(a>0)
上存在极值点,求实数a的取值范围;
(2)知果当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围;
(3)求证:[(n+1)!]2>(n+1)en-2+
2
n+1
,这里n∈N*,(n+1)!=1×2×3×…×(n+1),e为自然对数的底数.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•牡丹江一模)已知函数f(x)=xlnx.
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程;
(Ⅲ)设函数g(x)=f(x)-a(x-1),其中a∈R,求函数g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•牡丹江一模)已知四棱锥P-ABCD的三视图如图所示,则四棱锥P-ABCD的四个侧面中面积最大的是(  )

查看答案和解析>>

同步练习册答案