精英家教网 > 高中数学 > 题目详情
若函数f(x)=x+
1
x-2
(x>2)在x=x0处有最小值,则xo=(  )
A、1+
2
B、1+
3
C、4
D、3
考点:基本不等式
专题:不等式的解法及应用
分析:变形利用基本不等式的性质即可得出.
解答: 解:∵x>2,
∴函数f(x)=x+
1
x-2
=(x-2)+
1
x-2
+2≥2
(x-2)×
1
x-2
+2=4,当且仅当x-2=
1
x-2
,x>2,即x=3时取等号.
∴x0=3.
故选:D.
点评:本题考查了基本不等式的性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}的通项公式an=n2+n,则420是{an}的项吗?若是,求出是第几项?

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn为等比数列{an}的前n项和,若27a2-a5=0,则
S4
S2
等于(  )
A、-27B、10C、27D、80

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数,当x∈[0,2]时,f(x)=8(1-|x-1|),且对任意的实数x∈[2n-2,2n+1-2](n∈N+,且n≥2),都有f(x)=
1
2
f(
x
2
-1),若g(x)=f(x)-logax有且仅有三个零点,则a的取值范围为(  )
A、[2,10]
B、[
2
10
]
C、(2,10)
D、(
2
10

查看答案和解析>>

科目:高中数学 来源: 题型:

己知函数f(x)=tx,g(x)=(2-t)x2-4x+l.若对于任一实数x0,函数值f(x0)与g(x0)中至少有一个为正数,则实数t的取值范围是(  )
A、(-∞,-2)∪(0,2]
B、(-2,0)∪(-2,2]
C、(-2,2]
D、(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

有20位同学,编号从1-20,现在从中抽取4人的作文卷进行调查,用系统抽样方法确定所抽的编号为(  )
A、5,10,15,20
B、2,6,10,14
C、2,4,6,8
D、5,8,11,14

查看答案和解析>>

科目:高中数学 来源: 题型:

某班某次数学考试成绩好,中,差的学生人数之比为3:5:2,现在用分层抽样方法从中抽取容量为20的样本,则应从成绩好的学生中抽取
 
名学生.

查看答案和解析>>

科目:高中数学 来源: 题型:

在?ABCD中,AC=
65
,BD=
17
,周长为18,则这个平行四边形的面积为(  )
A、16
B、17
1
2
C、18
D、32

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:
(1)cos(90°+α)+sin(180°-α)-sin(180°+α)-sin(-α).
(2)
sin(π-α)
tan(π+α)
cot(
π
2
-α)
tan(
π
2
+α)
cos(-α)
sin(2π-α)

查看答案和解析>>

同步练习册答案