精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2cosx•sin(x+
π
3
)+sinx•(cosx-
3
sinx)

(1)求函数f(x)的最小正周期和单调递减区间;
(2)在△ABC中,a,b,c分别是角A、B、C的对边,若f(C)=1,c=
2
,求△ABC面积的最大值.
分析:(1)利用三角恒等变换公式,化简得f(x)=2sin(2x+
π
3
)
.再由三角函数的周期公式和单调区间的公式解不等式,可得f(x)的最小正周期和单调递减区间;
(2)由函数f(x)的表达式,解出C=
π
4
.利用余弦定理c2=a2+b2-2abcosC的式子,结合基本不等式解出ab≤2+
2
.由此利用三角形的面积公式,可得当且仅当a=b=
2+
2
时△ABC的面积有最大值,并可求出这个最大值.
解答:解:(1)根据题意,可得
f(x)=2cosx•sin(x+
π
3
)+sinx•(cosx-
3
sinx)

=2cosx(
1
2
sinx+
3
2
cosx)+sinx•cosx-
3
sin2x

=sin2x+
3
cos2x
=2sin(2x+
π
3
)

∴函数f(x)的最小正周期为T=
2

2kπ+
π
2
≤2x+
π
3
≤2kπ+
2
,解得kπ+
π
12
≤x≤kπ+
12
(k∈Z)
即单调递减区间为[kπ+
π
12
,kπ+
12
](k∈Z)
;(6分)
(2)由f(C)=2sin(2C+
π
3
)=1
,解得sin(2C+
π
3
)=
1
2

∵C是△ABC的内角,∴2C+
π
3
=
6
,得C=
π
4

由余弦定理,得2=a2+b2-2ab•
2
2
≥2ab-
2
ab

ab≤
2
2-
2
=2+
2
(当且仅当a=b=
2+
2
时取等号)
因此,△ABC面积的最大值为S=
1
2
ab•sinC=
1
2
×(2+
2
2
2
=
2
+1
2
.  (12分)
点评:本题给出三角函数的表达式,求函数的周期与单调区间,并依此求三角形面积的最值.着重考查了三角函数的图象与性质、正余弦定理和基本不等式求最值等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2-xx+1

(1)求出函数f(x)的对称中心;
(2)证明:函数f(x)在(-1,+∞)上为减函数;
(3)是否存在负数x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-x-1,x≤0
x
,x>0
,则f[f(-2)]=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(sin2x+
3
2
)cosx-sin3x

(1)求函数f(x)的值域和最小正周期;
(2)当x∈[0,2π]时,求使f(x)=
3
成立的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2-
ax+1
(a∈R)
的图象过点(4,-1)
(1)求a的值;
(2)求证:f(x)在其定义域上有且只有一个零点;
(3)若f(x)+mx>1对一切的正实数x均成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-2cosx
+
2-2cos(
3
-x)
,x∈[0,2π],则当x=
3
3
时,函数f(x)有最大值,最大值为
2
3
2
3

查看答案和解析>>

同步练习册答案