精英家教网 > 高中数学 > 题目详情

【题目】已知是椭圆的右焦点,过原点的直线交于两点,则的取值范围是______.

【答案】

【解析】

求得椭圆的a,b,c,取左焦点F',可得四边形MFNF'为平行四边形,由椭圆定义可得|MF|+|NF|=4,设|MF|=x,x∈[1,3],则|NF|=4-x,则= ,运用导数求得单调性,可得最值,即可得到所求范围.

椭圆C:的a=2,b=,c=1,可取左焦点为F',连接MF',NF',
可得四边形MFNF'为平行四边形,即有|MF|+|NF|=|MF|+|MF'|=2a=4,设|MF|=x,x∈[1,3],则|NF|=4-x,则=可令f(x)=, 可得f(x)在[1,]递减,(,3]递增,
可得f(x)的最小值为f()=,f(1)=,f(3)=即f(x)的最大值为,则的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆,点在椭圆上,椭圆的离心率是.

(1)求椭圆的标准方程;

(2)设点为椭圆长轴的左端点,为椭圆上异于椭圆长轴端点的两点,记直线斜率分别为,若,请判断直线是否过定点?若过定点,求该定点坐标,若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是由正整数组成的无穷数列,对任意满足如下两个条件:①的倍数;②.

(1)若,写出满足条件的所有的值;

(2)求证:当时,

(3)求所有可能取值中的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的奇函数满足,且当时,,则下列结论正确的是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知点轴与圆的一个公共点(异于原点),抛物线的准线为上横坐标为的点的距离等于.

(1)求的方程;

(2)直线与圆相切且与相交于两点,若的面积为4,求的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1所示,在中, 的平分线,点在线段上, .如图2所示,将沿折起,使得平面平面,连结,设点的中点.

图1 图2

(1)求证: 平面

(2)在图2中,若平面,其中为直线与平面的交点,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

I)若,求在区间上的最大值和最小值;

II)解关于x的不等式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数R上的奇函数,mn是常数.

1)求mn的值;

2)判断的单调性并证明;

3)不等式对任意恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案