精英家教网 > 高中数学 > 题目详情

【题目】一个盒子内装有8张卡片,每张卡片上面写着1个数字,这8个数字各不相同,且奇数有3个,偶数有5个.每张卡片被取出的概率相等.

(Ⅰ)如果从盒子中一次随机取出2张卡片,并且将取出的2张卡片上的数字相加得到一个新数,求所得新数是偶数的概率;

(Ⅱ)现从盒子中一次随机取出1张卡片,每次取出的卡片都不放回盒子,若取出的卡片上写着的数是偶数则停止取出卡片,否则继续取出卡片.设取出了次才停止取出卡片,求的分布列和数学期望.

【答案】1;(2)见解析.

【解析】试题分析:(1)得到偶数的情况有偶数加偶数,奇数加奇数,分别求出它们的种数,用古典概型求出概率;(2)由于奇数有3个,所以取出卡片的次数1,2,3,4,再分别求出取这几个值时的概率,写出分布列,算出数学期望。

试题解析:(1)记 “任取2张卡片,将卡片上的数字相加得到的新数是偶数”为事件,

事件总数为

因为偶数加偶数,奇数加奇数,都是偶数,则事件种数为

. 所得新数是偶数的概率 .

(2)所有可能的取值为1,2,3,4,

根据题意得

的分布列为

1

2

3

4

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对30名六年级学生进行了问卷调查,得到数据如表所示(平均每天喝500ml以上为常喝,体重超过50kg为肥胖):

常喝

不常喝

合计

肥胖

2

8

不肥胖

18

合计

30

(Ⅰ)请将上面的列联表补充完整;

(Ⅱ)是否有99%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由.

0.050 0.010

3.841 6.635

参考数据:

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,若F(x)=f[f(x)+1]+m有两个零点x1 , x2 , 则x1x2的取值范围是(
A.[4﹣2ln2,+∞)
B.( ,+∞)
C.(﹣∞,4﹣2ln2]
D.(﹣∞,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若在定义域内存在,使得成立,则称为函数的局部对称点.

(1)若,证明:函数必有局部对称点;

(2)若函数在区间内有局部对称点,求实数的取值范围;

(3)若函数上有局部对称点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求的单调区间;

(2)证明:当时,方程在区间上只有一个解;

(3)设,其中.若恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】Sn为等比数列的前n项和,已知S2=2,S3=-6.

(1)求的通项公式;

(2)求Sn,并判断Sn+1SnSn+2是否成等差数列

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 =1(a>0,b>0),过其左焦点F作x轴的垂线,交双曲线于A,B两点,若双曲线的右顶点在以AB为直径的圆外,则双曲线离心率的取值范围是(
A.(1,
B.(1,2)
C.( ,+∞)
D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC﹣A1B1C1中,D,E分别是B1C1、BC的中点,∠BAC=90°,AB=AC=2,A1A=4,A1E=
(Ⅰ)证明:A1D⊥平面A1BC;
(Ⅱ)求二面角A﹣BD﹣B1的平面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)若,且,求的最小值;

(2)若,且上恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案