精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,已知R为圆上的一动点,Rx轴,y轴上的射影分别为点ST,动点P满足,记动点P的轨迹为曲线C,曲线Cx轴交于AB两点.

(1)求曲线C的方程;

(2)已知直线APBP分别交直线于点M,N,曲线C在点Р处的切线与线段MN交于点Q,求的值.

【答案】(1);(2

【解析】

(1)设,根据已知求出代入,即得曲线C的方程;(2)设,先求出曲线C在点P处的切线方程为.令,得点Q的纵坐标为,再根据求出的值.

(1)设,则,又Rx轴,y轴上的射影分别为点ST

所以.由,得代入

,故曲线C的方程为

(2)设,则

不妨设直线AP的方程为

,得点M的纵坐标为;直线BP的方程为

,得点N的纵坐标为

设曲线C在点P处的切线方程为

,得

整理得

代入上式并整理,

.解得

所以曲线C在点P处的切线方程为

,得点Q的纵坐标为

,所以

所以,所以

代入上式,得

解得,即

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对于不重合的两个平面αβ,给定下列条件:

①存在平面γ,使得αβ都平行于γ

②存在两条不同的直线lm,使得lβmβ,使得lαmα

α内有不共线的三点到β的距离相等;

④存在异面直线lm,使得lαlβmαmβ.

其中,可以判定αβ平行的条件有(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】前些年有些地方由于受到提高的影响,部分企业只重视经济效益而没有树立环保意识,把大量的污染物排放到空中与地下,严重影响了人们的正常生活,为此政府进行强制整治,对不合格企业进行关闭,整顿,另一方面进行大量的绿化来净化和吸附污染物,通过几年的整治,环境明显得到好转,针对政府这一行为,老百姓大大点赞.

(1)某机构随机访问50名居民,这50名居民对政府的评分(满分100分)如下表:

分数

频数

2

3

11

14

11

9

请在答题卡上作出居民对政府的评分频率分布直方图:

(2)当地环保部门随机抽测了2019年6月的空气质量指数,其数据如下表:

空气质量指数

0—50

50—100

100—150

150—200

天数

2

18

8

2

用空气质量指数的平均值作为该月空气质量指数级别,求出该月空气质量指数级别为第几级?(同一组数据用该组数据的区间中点值作代表,将频率视为概率)(相关知识参见附表)

(3)空气受到污染,呼吸系统等疾病患者最易感染,根据历史经验,凡遇到空气轻度污染,小李每天会服用有关药品花费50元,遇到中度污染每天服药的费用达到100元.环境整治前的2015年11月份小李因受到空气污染患呼吸系统等疾病花费了5000元,试估计2019年11月份(参考(2)中表格数据)小李比以前少花了多少钱的医药费?

附:

空气质量指数

0-50

50-100

100-150

150-200

200-300

>300

空气质量指数级别

I

II

III

IV

V

VI

空气质量指数

轻度污染

中度污染

重度污染

严重污染

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解某校学生课外时间的分配情况,拟采用分层抽样的方法从该校的高一、高二、高三这三个年级中共抽取5个班进行调查,已知该校的高一、高二、高三这三个年级分别有1866个班级.

(Ⅰ)求分别从高一、高二、高三这三个年级中抽取的班级个数;

(Ⅱ)若从抽取的5个班级中随机抽取2个班级进行调查结果的对比,求这2个班级中至少有1个班级来自高一年级的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论函数的导函数的单调性;

(2)若函数处取得极大值,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年12月1日,贵阳市地铁一号线全线开通,在一定程度上缓解了出行的拥堵状况.为了了解市民对地铁一号线开通的关注情况,某调查机构在地铁开通后的某两天抽取了部分乘坐地铁的市民作为样本,分析其年龄和性别结构,并制作出如下等高条形图:

根据图中(岁以上含岁)的信息,下列结论中不一定正确的是( )

A. 样本中男性比女性更关注地铁一号线全线开通

B. 样本中多数女性是岁以上

C. 岁以下的男性人数比岁以上的女性人数多

D. 样本中岁以上的人对地铁一号线的开通关注度更高

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,过点的直线与抛物线交于 两点,又过两点分别作抛物线的切线,两条切线交于点。

1)证明:直线的斜率之积为定值;

2)求面积的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就.杨辉三角中,第行的所有数字之和为,若去除所有为1的项,依次构成数列,则此数列的前55项和为( )

A. 4072B. 2026C. 4096D. 2048

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,圆的参数方程为为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.

1)求圆的普通方程和直线的直角坐标方程;

2)设是直线上任意一点,过作圆切线,切点为,求四边形(点为圆的圆心)面积的最小值.

查看答案和解析>>

同步练习册答案