精英家教网 > 高中数学 > 题目详情

【题目】如图,D为正三棱柱ABCA1B1C1的棱AC的中点.

1)证明:AB1∥平面BC1D

2)若二面角CBC1D的大小为45°,求直线AB与平面BB1C1C夹角的大小.

【答案】1)见解析(260°

【解析】

(1) 连接CB1交线段BC1于点M,再证明DMAB1即可.

(2)根据正三棱柱的性质过点AAN⊥面BCN,则∠ABN即直线AB与平面BB1C1C所成的角,再求解即可.

1)证:由题意及图,可连接CB1交线段BC1于点M,则MCB1的中点,连接DM,

DAC的中点,所以DM是△ACB1的中位线,

DMAB1,

DM平面BC1D,AB1平面BC1D,

AB1∥平面BC1D

2)∵正三棱柱ABCA1B1C1,所以面ABC⊥面BB1C1C,

过点AAN⊥面BCN,则AN⊥面BB1C1C,

所以∠ABN即直线AB与平面BB1C1C所成的角,

又底面ABC是正三角形,所以直线AB与平面BB1C1C夹角的大小是60°

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆的离心率为,过左焦点且斜率为的直线交椭圆两点,线段的中点为,直线交椭圆两点.

(1)求椭圆的方程;

(2)求证:点在直线上;

(3)是否存在实数,使得?若存在,求出的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从参加某次知识竞赛的同学中,选取60名同学将其成绩(单位:分.百分制,均为整数)分成六组后,得到部分频率分布直方图(如图),观察图形中的信息,回答下列问题.

1)求分数在内的频率,并补全这个频率分布直方图;

2)从频率分布直方图中,估计本次考试成绩的众数和平均数;

3)若从第1组和第6组两组学生中,随机抽取2人,求所抽取2人成绩之差的绝对值大于10的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的实轴端点分别为,记双曲线的其中一个焦点为,一个虚轴端点为,若在线段上(不含端点)有且仅有两个不同的点,使得,则双曲线的离心率的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】世界互联网大会是由中国倡导并每年在浙江省嘉兴市桐乡乌镇举办的世界性互联网盛会,大会旨在搭建中国与世界互联互通的国际平台和国际互联网共享共治的中国平台,让各国在争议中求共识在共识中谋合作在合作中创共赢.20191020日至22日,第六届世界互联网大会如期举行,为了大会顺利召开,组委会特招募了1 000名志愿者.某部门为了了解志愿者的基本情况,调查了其中100名志愿者的年龄,得到了他们年龄的中位数为34岁,年龄在岁内的人数为15,并根据调查结果画出如图所示的频率分布直方图:

1)求的值并估算出志愿者的平均年龄(同一组的数据用该组区间的中点值代表);

2)这次大会志愿者主要通过现场报名和登录大会官网报名,即现场和网络两种方式报名调查.100位志愿者的报名方式部分数据如下表所示,完善下面的表格,通过计算说明能

否在犯错误的概率不超过0.001的前提下,认为选择哪种报名方式与性别有关系”?

男性

女性

总计

现场报名

50

网络报名

31

总计

50

参考公式及数据:,其中.

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,的中点.

(1)求证:平面

(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,讨论函数的单调性

(2)当时,,对任意,都有恒成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,侧面是菱形,其对角线的交点为,且.

1)求证:平面

2)设,若直线与平面所成的角为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校象棋社团组织中国象棋比赛,采用单循环赛制,即要求每个参赛选手必须且只须和其他选手各比赛一场,胜者得分,负者得分,平局两人各得分.若冠军获得者得分比其他人都多,且获胜场次比其他人都少,则本次比赛的参赛人数至少为

A. B. C. D.

查看答案和解析>>

同步练习册答案