【题目】设a,b∈R.若直线l:ax+y﹣7=0在矩阵A= 对应的变换作用下,得到的直线为l′:9x+y﹣91=0.求实数a,b的值.
【答案】解:方法一:在直线l:ax+y﹣7=0取A(0,7),B(1,7﹣a), 由 = ,则 = ,
则A(0,7),B(1,7﹣a)在矩阵A对应的变换作用下A′(0,7b),B′(3,b(7﹣a)﹣1),
由题意可知:A′,B′在直线9x+y﹣91=0上,
,解得: ,
实数a,b的值2,13.
方法二:设直线l上任意一点P(x,y),点P在矩阵A对应的变换作用下得到Q(x′,y′),
则 = ,
∴ ,
由Q(x′,y′),在直线l′:9x+y﹣91=0.即27x+(﹣x+by)﹣91=0,
即26x+by﹣91=0,
P在ax+y﹣7=0,则ax+y﹣7=0,
∴ = = ,
解得:a=2,b=13.
实数a,b的值2,13
【解析】方法一:任取两点,根据矩阵坐标变换,求得A′,B′,代入直线的直线为l′即可求得a和b的值;方法二:设P(x,y),利用矩阵坐标变换,求得Q点坐标,代入直线为l′,由ax+y﹣7=0,则 = = ,即可求得a和b的值.
科目:高中数学 来源: 题型:
【题目】如图,设是平面内相交成角的两条数轴 ,分别是轴,轴正方向同向的单位向量,若向量,则把有序数对叫做向量在坐标系中的坐标,假设.
(1)计算的大小;
(2)设向量,若与共线,求实数的值;
(3)是否存在实数,使得与向量垂直,若存在求出的值,若不存在请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱锥中,底面是菱形,侧面平面,且,,.
(Ⅰ)证明:平面;
(Ⅱ)若点在线段上,且,试问:在上是否存在一点,使面?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.
(Ⅰ)求证:AA1⊥平面ABC;
(Ⅱ)求二面角A1-BC1-B1的余弦值;
(Ⅲ)证明:在线段BC1存在点D,使得AD⊥A1B,并求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某投资公司计划投资两种金融产品,根据市场调查与预测,产品的利润与投资金额的函数关系为,产品的利润与投资金额的函数关系为(注:利润与投资金额单位:万元).
(1)该公司现有100万元资金,并计划全部投入两种产品中,其中万元资金投入产品,试把两种产品利润总和表示为的函数,并写出定义域;
(2)怎样分配这100万元资金,才能使公司的利润总和获得最大?其最大利润总和为多少万元.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,直线的参数方程为:(为参数),以坐标原点为极点,以轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,直线与曲线交于,两点.
(1)求直线的普通方程和曲线的直角坐标方程;
(2)若点的极坐标为,求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】 某创业投资公司拟投资开发某种新能源产品,估计能获得25万元~ 1600万元的投资收益,现准备制定一个对科研课题组的奖励方案:奖金y(单位:万元)随投资收益x(单位:万元)的增加而增加,奖金不超过75万元,同时奖金不超过投资收益的20%.(即:设奖励方案函数模型为y=f (x)时,则公司对函数模型的基本要求是:当x∈[25,1600]时,①f(x)是增函数;②f (x) 75恒成立; 恒成立.
(1)判断函数是否符合公司奖励方案函数模型的要求,并说明理由;
(2)已知函数符合公司奖励方案函数模型要求,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地空气中出现污染,须喷洒一定量的去污剂进行处理.据测算,每喷洒1个单位的去污剂,空气中释放的浓度y(单位:毫克/立方米)随着时间x(单位:天)变化的函数关系式近似为,若多次喷洒,则某一时刻空气中的去污剂浓度为每次投放的去污剂在相应时刻所释放的浓度之和.由实验知,当空气中去污剂的浓度不低于4(毫克/立方米)时,它才能起到去污作用.
(Ⅰ)若一次喷洒4个单位的去污剂,则去污时间可达几天?
(Ⅱ)若第一次喷洒2个单位的去污剂,6天后再喷洒 个单位的去污剂,要使接下来的4天中能够持续有效去污,试求的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com