精英家教网 > 高中数学 > 题目详情
17.已知P:?x∈Z,x3<1,则¬P是(  )
A.?x∈Z,x3≥1B.?x∉Z,x3≥1C.?x∈Z,x3≥1D.?x∉Z,x3≥1

分析 根据全称命题的否定是特称命题,即可得到结论.

解答 解:∵命题p是全称命题,
∴根据全称命题的否定是特称命题,可知:?x∈Z,x3≥1,
故选:C

点评 本题主要考查含有量词的命题的否定,全称命题的否定是特称命题,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.若不等式 $m>n与\frac{1}{m}>\frac{1}{n}(m,n∈R)$ 同时成立,则 (  )
A.m>0>nB.0>m>n
C.m>n>0D.m,n与0的大小关系不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知双曲线$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线平行于直线l:y=x+10,双曲线的一个焦点在直线l上,则双曲线的方程为(  )
A.$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{20}$=1B.$\frac{{x}^{2}}{20}$-$\frac{{y}^{2}}{5}$=1C.y2-x2=50D.x2-y2=10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.不等式(x+1)(x-2)>0的解集为(  )
A.{x|x<-1或x>2}B.{x|x<-2或x>1}C.{x|-2<x<1}D.{x|-1<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.试用函数单调性的定义证明:$f(x)=\frac{2x}{x-1}$在(1,+∞)上是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.等比数列{an}前四项和为1,前8项和为17,则它的公比为(  )
A.2B.-2C.2或-2D.2或-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知椭圆方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0),F1,F2分别是其左、右焦点,O是坐标原点,A是椭圆上不同于顶点的任一点,$∠A{F_1}{F_2}={30^0},AO=O{F_2}$,该椭圆的离心率e=$\sqrt{3}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.近年来我国电子商务行业迎来发展的新机遇.2016年双十一期间,某购物平台的销售业绩高达516亿人民币,与此同时,相关管理部门推出了针对电商的商品和服务的评价体系现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.6,对服务的好评率为0.75.其中对商品和服务都做出好评的交易为80次.
(1)先完成关于商品和服务评价的2×2列联表,再判断能否在犯错误的概率不超过0.001的前提下,以为商品好评与服务好评有关?
(2)若用分层抽样的方法从“对商品好评”和“商品不满意”中抽出5次交易,再从这5次交易中选出2次,求恰有一次为“商品好评”的概率.
附临界值表:
P(k2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.89710.828
k2的观测值:$k=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
关于商品和服务评价的2×2列联表:
对服务好评对服务不满意合计
对商品好评a=80b=40120
对商品不满意c=70d=1080

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知二次函数y=ax2+bx+c=0(a≠0)的图象如图所示,记p=|a-b+c|+|2a+b|,q=|a+b+c|+|2a-b|,则(  )
A.p>qB.p=q
C.p<qD.p,q大小关系不能确定

查看答案和解析>>

同步练习册答案