精英家教网 > 高中数学 > 题目详情
如图,一个小球从M处投入,通过管道自上而下落到A或B或C。已知小球从每个叉口落入左右两个管道的可能性是相等的.某商家按上述投球方式进行促销活动,若投入的小球落到A,B,C,则分别设为1,2,3等奖,
(Ⅰ)已知获得1,2,3等奖的折扣率分别为50%,70%,90%。记随机变量ξ为获得k(k=1,2,3)等奖的折扣率,求随机变量ξ的分布列及期望Eξ;
(Ⅱ)若有3人次(投入1球为1人次)参加促销活动,记随机变量η为获得1等奖或2等奖的人次,求P(η=2).
解:(Ⅰ)由题意得ξ的分布列为


(Ⅱ)由(Ⅰ)可知,获得1等奖或2等奖的概率为
由题意得
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,一个小球从M处投入,通过管道自上而下落A或B或C.已知小球从每个叉口落入左右两个管道的可能性是相等的.某商家按上述投球方式进行促销活动,若投入的小球落到A,B,C,则分别设为l,2,3等奖.
(I)已知获得l,2,3等奖的折扣率分别为50%,70%,90%.记随变量ξ为获得k(k=1,2,3)等奖的折扣率,求随机变量ξ的分布列及期望Εξ;
(II)若有3人次(投入l球为l人次)参加促销活动,记随机变量η为获得1等奖或2等奖的人次,求P(η=2).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图.一个小球从M处投入,通过管道自上而下落到A或B或C.已知小球从每个叉口落入左右两个管道的可能性是相等的.某商家按上述投球方式进行促销活动,若投入的小球落到A,B,C.则分别设为1,2,3等奖.
(1)求投入小球1次获得1等奖的概率;
(2)已知获得1,2,3等奖的折扣率分别为50%,70%,90%.记随机变量ξ为获得k(k=1,2,3)等奖的折扣率.求随机变量ξ的分布列及数学期望Eξ;
(3)若有3人次(投入1球为1人次)参加促销活动,记随机变量η为获得1等奖或2等奖的人次.求P(η=2).(即求3次中有二次获得1等奖或2等奖的概率)

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分l4分)如图,一个小球从M处投入,通过管道自上而下落ABC已知小球从每个叉口落入左右两个 管道的可能性是相等的.某商家按上述投球方式进行促销活动,若投入的小球落到A,B,C,则分别设为l,2,3等奖.

(I)已知获得l,2,3等奖的折扣率分别为50%,70%,90%.记随变量为获得k(k=1,2,3)等奖的折扣率,求随机变量的分布列及期望

(II)若有3人次(投入l球为l人次)参加促销活动,记随机变量为获得1等奖或2等奖的人次,求

查看答案和解析>>

科目:高中数学 来源:2010年普通高等学校招生全国统一考试(浙江卷)理科数学 题型:解答题

 

(19)        (本题满分l4分)如图,一个小球从M处投入,通过管道自

上而下落ABC已知小球从每个叉口落入左右两个

 管道的可能性是相等的.

某商家按上述投球方式进行促销活动,若投入的小球落

到A,B,C,则分别设为l,2,3等奖.

(I)已知获得l,2,3等奖的折扣率分别为50%,70%,90%.记随变量为获得k(k=1,2,3)等奖的折扣率,求随机变量的分布列及期望

(II)若有3人次(投入l球为l人次)参加促销活动,记随机变量为获得1等奖或2等奖的人次,求

 

查看答案和解析>>

科目:高中数学 来源:2010年高考试题(浙江卷)解析版(理) 题型:解答题

 [番茄花园1]  (本题满分l4分)如图,一个小球从M处投入,通过管道自

上而下落ABC。已知小球从每个叉口落入左右两个

 管道的可能性是相等的.

某商家按上述投球方式进行促销活动,若投入的小球落

到A,B,C,则分别设为l,2,3等奖.

(I)已知获得l,2,3等奖的折扣率分别为50%,70%,

90%.记随变量为获得k(k=1,2,3)等奖的折扣

率,求随机变量的分布列及期望

(II)若有3人次(投入l球为l人次)参加促销活动,记随机

变量为获得1等奖或2等奖的人次,求

 


 [番茄花园1]1.

查看答案和解析>>

同步练习册答案