分析 (1)求出f′(x),根据切点为M(t,f(t)),得到切线的斜率为f'(t),所以根据斜率和M点坐标写出切线方程即可;
(2)先求出函数的导函数,设出切点,然后求出在切点处的导数,从而求出切线的斜率,利用点斜式方程求出切线方程即可;
(3)设切线过点(a,b),则存在t使b=(3t2-1)a-2t3,于是过点(a,b)可作曲线y=f(x)的三条切线即为方程2t3-3at2+a+b=0有三个相异的实数根.记g(t)=2t3-3at2+a+b,求出其导函数=0时t的值,利用t的值分区间讨论导函数的正负得到g(t)的单调区间,利用g(t)的增减性得到g(t)的极值,根据极值分区间考虑方程g(t)=0有三个相异的实数根,得到极大值大于0,极小值小于0列出不等式,求出解集即可得证.
解答 解:(1)求函数f(x)的导函数;f'(x)=3x2-1.
曲线y=f(x)在点M(t,f(t))处的切线斜率为3t2-1,切点为(t,t3-t),
即有切线方程为:y-f(t)=f'(t)(x-t),即y=(3t2-1)x-2t3;
(2)由f′(x)=3x2-1.设切线的斜率为k,设切点是(x0,y0),
则有y0=x03-x0,①
k=f′(x0)=3x02-1,
切线的方程为y-x03+x0=(3x02-1)(x-x0),
代入(-1,0),可得-x03+x0=(3x02-1)(-1-x0),
解得x0=-1或x0=$\frac{1}{2}$,
∴所求曲线的切线方程为:x+4y+1=0或2x-y+2=0;
(3)证明:如果有一条切线过点(a,b),则存在t,使b=(3t2-1)a-2t3.
于是,若过点(a,b)可作曲线y=f(x)的三条切线,
则方程2t3-3at2+a+b=0有三个相异的实数根.
记g(t)=2t3-3at2+a+b,则g'(t)=6t2-6at=6t(t-a).
当t变化时,g(t),g'(t)变化情况如下表:
t | (-∞,0) | 0 | (0,a) | a | (a,+∞) |
g′(t) | + | 0 | - | 0 | + |
g(t) | 增 | 极大值a+b | 减 | 极小值b-f(a) | 增 |
点评 本题主要考查了利用导数研究曲线上某点切线方程,考查导数的几何意义:切点处的导数值是切线的斜率;注意“在点处的切线”与“过点的切线”的区别,会利用导数研究函数的增减性得到函数的极值.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [-10,-9] | B. | (-10,-9) | C. | [-9,-8] | D. | (-9,-8) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{3}{5}$ | D. | $\frac{5}{6}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com