精英家教网 > 高中数学 > 题目详情
16.用系统抽样法从160名学生中抽取容量为20的样本,将160名学生从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,…,153~160号).若假设第1组抽出的号码为3,则第5组中用抽签方法确定的号码是35.

分析 按照此题的抽样规则我们可以得到抽出的这20个数成等差数列,首项为3,d=8(d是公差),即可得出结论.

解答 解:由题意可得分段间隔是8,抽出的这20个数成等差数列,首项为3,
∴第5组中用抽签方法确定的号码是3+32=35.
故答案为:35.

点评 系统抽样形象地讲是等距抽样,系统抽样适用于总体中的个体数较多的情况,系统抽样属于等可能抽样.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.设椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$ 的左右焦点分别为F1,F2,点P 在椭圆上运动,$|{{{\overrightarrow{PF}}_1}}|×|{\overrightarrow{P{F_2}}}|$ 的最大值为m,$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$的最小值为n,且m≥2n,则该椭圆的离心率的取值范围为[$\frac{1}{2}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数$f(x)=\left\{\begin{array}{l}0,(x>0)\\ π,(x=0)\\ 1,(x<0)\end{array}\right.$,则f(f(f(π)))=(  )
A.1B.0C.πD.π+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知椭圆具有性质:若M、N是椭圆上关于原点对称的两个点,点P是椭圆上的任意一点,当直线PM、PN的斜率都存在,并记为kPM,kPN时,那么kPM与kPN之积是与P点无关的定值.现将椭圆改为双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0),且kPM<0、kPN<0,则kPM+kPN的最大值为(  )
A.$-\frac{2b}{a}$B.$-\frac{2a}{b}$C.$-\frac{{\sqrt{2}b}}{a}$D.$-\frac{{\sqrt{2}b}}{a}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点为F1,右焦点为F2,离心率e=$\frac{1}{2}$,P是椭圆上的一点,已知△PF1F2内切圆半径为1,内心为I,且S${\;}_{△PI{F}_{1}}$+S${\;}_{△PI{F}_{2}}$=2.
(1)求椭圆E的方程;
(2)过椭圆的左焦点F1做两条互相垂直的弦AB,CD,求|$\overrightarrow{AB}$|+|$\overrightarrow{CD}$|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.过点(3,2)的直线l与x轴的正半轴,y轴的正半轴分别交于A,B两点,当△AOB的面积最小时,求直线l的方程及△AOB面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合P={y|y=($\frac{1}{2}$)x,x>0},Q={x|y=lg(2x-x2)},则∁RP∩Q=(  )
A.[1,2)B.(1,+∞)C.[2,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知正项数列{an}的前n项和为Sn,满足${a_{n+1}}=2\sqrt{S_n}+1$,(n∈N*),且a1=1
(I)求an
(II)设数列$\left\{{\frac{1}{{{a_n}{a_{n+1}}}}}\right\}$前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数$t=-144×lg(1-\frac{N}{100})$的图象表示打字练习的“学习曲线”,其中N表示打字速度(字/min),t(h)表示达到打字水平N(字/min)所需要的学习时间.依此学习规律要想达到90字/min的打字速度,所需的学习时间为144小时.

查看答案和解析>>

同步练习册答案