【题目】某人有两盒火柴,每盒都有根火柴,每次用火柴时他在两盒中任取一盒并从中抽出一根,求他发现用完一盒时另一盒还有根()的概率_____.
科目:高中数学 来源: 题型:
【题目】是定义在上且满足如下条件的函数组成的集合:①对任意的,都有②存在常数使得对任意的,都有.
(1)设问是否属于?说明理由;
(2)若如果存在使得证明:这样的是唯一的;
(3)设且试求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一个给定的正边形的顶点中随机地选取三个不同的顶点,任何一种选法的可能性是相等的,则正多边形的中心位于所选三个点构成的三角形内部的概率为______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,若同时满足以下条件:
①在D上单调递减或单调递增;
②存在区间,使在 上的值域是,那么称为闭函数.
(1)求闭函数符合条件②的区间 ;
(2)判断函数是不是闭函数?若是请找出区间;若不是请说明理由;
(3)若是闭函数,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数在区间上的最大值为4,最小值为1,记为.
(1)求实数,的值;
(2)若不等式成立,求实数的取值范围;
(3)对于任意满足的自变量,,,…,,如果存在一个常数,使得定义在区间上的一个函数,恒成立,则称函数为区间上的有界变差函数,试判断函数是否是区间上的有界变差函数,若是,求出的最小值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数是上的偶函数,对于都有成立,且,当,,且时,都有.则给出下列命题:①;②为函数图象的一条对称轴;③函数在上为减函数;④方程在上有4个根;其中正确的命题个数为( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列,为其前项的和,满足.
(1)求数列的通项公式;
(2)设数列的前项和为,数列的前项和为,求证:当,时;
(3)已知当,且时有,其中,求满足的所有的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com