精英家教网 > 高中数学 > 题目详情
1.直线x-y+1=0的倾斜角为(  )
A.-45°B.-30°C.45°D.135°

分析 把已知直线的方程变形后,找出直线的斜率,根据直线斜率与倾斜角的关系,即直线的斜率等于倾斜角的正切值,得到倾斜角的正切值,由倾斜角的范围,利用特殊角的三角函数值即可求出倾斜角的度数.

解答 解:由直线x-y+1=0变形得:y=x+1
所以该直线的斜率k=1,
设直线的倾斜角为α,即tanα=1,
∵α∈[0,180°),
∴α=45°.
故选C.

点评 此题考查了直线的倾斜角,以及特殊角的三角函数值.熟练掌握直线倾斜角与斜率的关系是解本题的关键,同时注意直线倾斜角的范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知f(x)为定义在R上的奇函数,且当x≥0时,f(x)=x2-(a+4)x+a
(1)求实数a的值;
(2)求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.计算机通常使用若干个数字0到1排成一列来表示一个物理编号,现有4个“0”与4个“1”排成一列,那么用这8个数字排成一列能表示的物理信号的个数是(  )
A.140B.110C.70D.60

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若焦点在x轴上的椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{5}=1\;(a>0)$的离心率为$\frac{2}{3}$,则a的值为(  )
A.9B.6C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.三棱柱ABC-A1B1C1中,AB=AC,侧棱AA1⊥平面ABC,E,F分别为A1B1,A1C1的中点.
(Ⅰ)求证:B1C1∥面BEF;
(Ⅱ)过点A存在一条直线与平面BEF垂直,请你在图中画出这条直线(保留作图痕迹,不必说明理由).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知抛物线C:y2=4x的焦点为F,P(x0,y0)是C上一点,且$|PF|=\frac{3}{2}{x_0}$,则x0的值为(  )
A.8B.4C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知点F1为圆(x+1)2+y2=16的圆心,N为圆F1上一动点,点M,P分别是线段F1N,F2N上的点,且满足$\overrightarrow{MP}$•$\overrightarrow{{F}_{2}N}$=0,$\overrightarrow{{F}_{2}N}$=2$\overrightarrow{{F}_{2}P}$.
(Ⅰ)求动点M的轨迹E的方程;
(Ⅱ)过点F2的直线l(与x轴不重合)与轨迹E交于A,C两点,线段AC的中点为G,连接OG并延长交轨迹E于B点(O为坐标原点),求四边形OABC的面积S的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在平面直角坐标系xOy中,$\overrightarrow{i}$,$\overrightarrow{j}$分别是与x轴、y轴方向相同的单位向量,已知$\overrightarrow{OA}$=$\overrightarrow{i}$+2$\overrightarrow{j}$,$\overrightarrow{OB}$=3$\overrightarrow{i}$+4$\overrightarrow{j}$,$\overrightarrow{OC}$=2t$\overrightarrow{i}$+(t+5)$\overrightarrow{j}$,若$\overrightarrow{AB}$与$\overrightarrow{AC}$共线,则实数t的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知正实数a,b满足a+b=2,则$\frac{1}{a}+\frac{2}{b}$的最小值为(  )
A.$\frac{{3+2\sqrt{2}}}{2}$B.3C.$\frac{3}{2}$D.$3+2\sqrt{2}$

查看答案和解析>>

同步练习册答案