分析 根据指数幂和对数的运算性质计算即可.
解答 解:(1)$(0.027)^{-\frac{1}{3}}$-$25{6}^{\frac{3}{4}}$+$(2\sqrt{2})^{-\frac{2}{3}}$+π0=$0.{3}^{3×(-\frac{1}{3})}$-${4}^{4×\frac{3}{4}}$+${2}^{\frac{3}{2}×(-\frac{2}{3}})$+1=$\frac{10}{3}$-64+$\frac{1}{2}$+1=-$\frac{355}{6}$
(2)2log32-log332+log38-5log53=log3(4×8÷32)-3=-3.
点评 本题考查了对数的运算性质和指数幂的运算性质,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $f({{2^{\frac{1}{x}}}})>f({{{({\frac{1}{8}})}^2}})>f({{{log}_2}({\frac{1}{8}})})$ | B. | $f({{{({\frac{1}{8}})}^2}})>f({{2^{\frac{1}{x}}}})>f({{{log}_2}({\frac{1}{8}})})$ | ||
C. | $f({{2^{\frac{1}{x}}}})>f({{{log}_2}({\frac{1}{8}})})>f({{{({\frac{1}{8}})}^2}})$ | D. | $f({{{({\frac{1}{8}})}^2}})>f({{{log}_2}({\frac{1}{8}})})>f({{2^{\frac{1}{x}}}})$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com