精英家教网 > 高中数学 > 题目详情

【题目】如图所示,已知正方体ABCDA1B1C1D1的棱长为a , 过点B1B1EBD1于点E , 求AE两点之间的距离.

【答案】解:以D为坐标原点建立如图所示的空间直角坐标系,
根据题意,可得A(a,0,0)、B(aa,0)、D1(0,0,a)、B1(aaa).

过点EEFBDF,如图所示,

则在Rt△BB1D1中,

|BB1|=a,|BD1|= a,|B1D1|= a

所以|B1E|=

所以Rt△BEB1中,|BE|= a

由Rt△BEF∽Rt△BD1D,得|BF|= a,|EF|= ,所以点F的坐标为( ,0),

则点E的坐标为( ).

由两点间的距离公式,得

|AE|= a

所以AE两点之间的距离是 a.


【解析】先建立适当的直角坐标系,根据题意表示出相关点的坐标,再根据题中点E的位置关系求得点E的坐标,利用两点间的距离公式表示出线段AE的长度.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知f(x)的定义域是(0,+∞),f'(x)为f(x)的导函数,且满足f(x)<f'(x),则不等式 f(2)的解集是(
A.(﹣∞,2)∪(1,+∞)
B.(﹣2,1)
C.(﹣∞,﹣1)∪(2,+∞)
D.(﹣1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a∈R,函数f(x)=log2 +a).
(1)当a=5时,解不等式f(x)>0;
(2)若关于x的方程f(x)﹣log2[(a﹣4)x+2a﹣5]=0的解集中恰好有一个元素,求a的取值范围.
(3)设a>0,若对任意t∈[ ,1],函数f(x)在区间[t,t+1]上的最大值与最小值的差不超过1,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆O: (a>b>0)过点( ,﹣ ),A(x0 , y0)(x0y0≠0),其上顶点到直线 x+y+3=0的距离为2,过点A的直线l与x,y轴的交点分别为M、N,且 =2
(1)证明:|MN|为定值;
(2)如图所示,若A,C关于原点对称,B,D关于原点对称,且 ,求四边形ABCD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中, 的中点,

(1)已知 ,求证: 平面
(2)已知 分别是 的中点,求证: 平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了适应市场需要,某地准备建一个圆形生猪储备基地(如右图),它的附近有一条公路,从基地中心O处向东走1 km是储备基地的边界上的点A , 接着向东再走7 km到达公路上的点B;从基地中心O向正北走8 km到达公路的另一点C.现准备在储备基地的边界上选一点D , 修建一条由D通往公路BC的专用线DE , 求DE的最短距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆O1的方程为x2+(y+1)2=4,圆O2的圆心为O2(2,1).
(1)若圆O1与圆O2外切,求圆O2的方程;
(2)若圆O1与圆O2交于AB两点,且|AB|=2 ,求圆O2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=4sinxcos(x+ )+m(x∈R,m为常数),其最大值为2. (Ⅰ)求实数m的值;
(Ⅱ)若f(α)=﹣ (﹣ <α<0),求cos2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】二手车经销商小王对其所经营的某一型号二手汽车的使用年数x(0<x≤10)与销售价格y(单位:万元/辆)进行整理,得到如下的对应数据:

使用年数

2

4

6

8

10

售价

16

13

9.5

7

4.5

参考公式:
(1)若这两个变量呈线性相关关系,试求y关于x的回归直线方程
(2)已知小王只收购使用年限不超过10年的二手车,且每辆该型号汽车的收购价格为ω=0.03x2﹣1.81x+16.2万元,根据(1)中所求的回归方程,预测x为何值时,小王销售一辆该型号汽车所获得的利润L(x)最大? (销售一辆该型号汽车的利润=销售价格﹣收购价格)

查看答案和解析>>

同步练习册答案