精英家教网 > 高中数学 > 题目详情
16.用图解法求下列线性规划问题:
(1)约束条件$\left\{\begin{array}{l}{x+y≤5}\\{x-y≤3}\\{x≥0}\\{y≥0}\\{\;}\end{array}\right.$,目标函数Zmax=2x+y;
(2)约束条件$\left\{\begin{array}{l}{2x+y≥4}\\{x+5y≥6}\\{x≥0}\\{y≥0}\end{array}\right.$,目标函数Zmin=3x+y;
(3)约束条件$\left\{\begin{array}{l}{2x-y-3≥0}\\{2x+3y-6≤0}\\{3x-5y-15≤0}\end{array}\right.$,目标函数Zmax=x+y.

分析 由约束条件作平面区域,化简目标函数为斜截式,从而由截距的最值确定目标函数的最值即可.

解答 解:(1)由约束条件$\left\{\begin{array}{l}{x+y≤5}\\{x-y≤3}\\{x≥0}\\{y≥0}\\{\;}\end{array}\right.$作平面区域如下,

化目标函数Z=2x+y为y=-2x+Z,
结合图象可知,
当y=-2x+Z过点B(4,1)时Z有最大值,
故Zmax=2×4+1=9;
(2)由约束条件$\left\{\begin{array}{l}{2x+y≥4}\\{x+5y≥6}\\{x≥0}\\{y≥0}\end{array}\right.$作平面区域如下,

化目标函数Z=3x+y为y=-3x+Z,
结合图象可知,
当y=-3x+Z过点A(0,4)时Z有最小值,
故Zmin=4;
(3)由约束条件$\left\{\begin{array}{l}{2x-y-3≥0}\\{2x+3y-6≤0}\\{3x-5y-15≤0}\end{array}\right.$作平面区域如下,

化目标函数Z=x+y为y=-x+Z,
结合图象可知,
当y=-x+Z过点A($\frac{75}{19}$,-$\frac{12}{19}$)时Z有最小值,
故Zmax=$\frac{75}{19}$-$\frac{12}{19}$=$\frac{63}{19}$.

点评 本题考查了线性规划的应用,注意将目标函数化成斜截式,从而由截距的最值确定目标函数的最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.正方体ABCD-A1B1C1D1中,
(1)与棱A1B1平行的棱是AD、BC、DD1、CC1;与棱B1B异面的棱为AD、A1D1、DC、D1C1;与棱C1B1垂直的棱为AB、A1B1、DC、D1C1、AA1、DD1,CC1,BB1
以下各题,解答应写出文字说明、证明过程或演算步骤
(2)A1B与CC1所成的角是45°;A1B1与CC1所成的角是90°;D1C与C1B所成的角是60°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知数列{an}满足an=$\left\{\begin{array}{l}{n,n=2k-1}\\{{a}_{\frac{n}{2}},n=2k}\end{array}\right.$,其中,k∈N*,设f(n)=a1+a2+a3+a4+…+${a}_{{2}^{n}-2}$+${a}_{{2}^{n}-1}$+${a}_{{2}^{n}}$,则f(2016)-f(2014)的值为42014

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.关于x的方程sinx+cosx=k在区间[0,π]内有两个不同的实根x1,x2,则实数k的取值范围是[1,$\sqrt{2}$),且sin(x1+x2)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知一个圆锥的母线长为L.
(1)若L=5,底面半径为4,求圆锥的全面积;
(2)若L为定值,求当圆锥的体积最大时,圆锥的高为多少?(用L表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设集合A={x|x+1=0}与B={x|x2-1=0},求A∩B和A∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知抛物线y2=12x与双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的渐近线的一个交点的横坐标为12,则双曲线的离心率等于(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知椭圆x2+ky2=2k(k>0)的一个焦点与抛物线y2=4x的焦点重合,则该椭圆的离心率是(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{6}}}{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图.已知空间四边形ABCD中,AD=BC,M,N分别为AB和CD的中点,且直线BC与MN所成的角为36°,求BC与AD所成的角.

查看答案和解析>>

同步练习册答案