精英家教网 > 高中数学 > 题目详情

【题目】已知复数,其中为虚数单位,对于任意复数,有

(1)求的值;

(2)若复数满足,求的取值范围;

(3)我们把上述关系式看作复平面上表示复数的点和表示复数的点之间的一个变换,问是否存在一条直线,若点在直线上,则点仍然在直线上?如果存在,求出直线的方程,否则,说明理由.

【答案】(1)2;(2);(3)存在,直线方程,理由见解析

【解析】

(1)利用复数的模的性质即可得解;

(2)利用复数的几何意义即可得解;

(3)设,由,得,① 设存在直线,则直线一定过原点,故设直线的方程为,② ,联立化简即可得解.

(1)因为,所以

,所以

(2)由,得复数的轨迹是点的中垂线,

,

所以

的取值范围为

(3)设

,得,①

设存在直线满足题意,则直线一定过原点,故设直线的方程为,②

由题意知:把①代入②可得,③

把②代入③可得,解得

故存在直线,其方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对于以为公共焦点的椭圆和双曲线,设是它们的一个公共点,分别为它们的离心率.,则的最大值为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区某农产品近几年的产量统计如表:

年份

2012

2013

2014

2015

2016

2017

年份代码t

1

2

3

4

5

6

年产量y(万吨)

6.6

6.7

7

7.1

7.2

7.4

Ⅰ)根据表中数据,建立关于的线性回归方程

(Ⅱ)根据线性回归方程预测2019年该地区该农产品的年产量.

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:.(参考数据:,计算结果保留小数点后两位)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.

(1) 证明:PB∥平面AEC

(2) 设二面角D-AE-C为60°,AP=1,AD=,求三棱锥E-ACD的体积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的上顶点为点,右焦点为.延长交椭圆于点,且满足.

(1)试求椭圆的标准方程;

(2)过点作与轴不重合的直线和椭圆交于两点,设椭圆的左顶点为点,且直线分别与直线交于两点,记直线的斜率分别为,则之积是否为定值?若是,求出该定值;若不是,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:若两个椭圆的离心率相等,则称两个椭圆是相似的.如图,椭圆与椭圆是相似的两个椭圆,并且相交于上下两个顶点,椭圆的长轴长是4,椭圆长轴长是2,点分别是椭圆的左焦点与右焦点.

1)求椭圆的方程;

2)过的直线交椭圆于点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知下列各组命题,其中的充分必要条件的是(

有两个不同的零点

是偶函数;

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某摸球游戏的规则如下:从装有5个大小、形状完全相同的小球的盒中摸球(其中3个红球、2个黄球),每次摸一个球记录颜色并放回,若摸出红球记1分,摸出黄球记2分.

1)求摸球三次得分为5的概率;

2)设ξ为摸球三次所得的分数,求随机变量ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《周髀算经》中有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列,冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为85.5尺,则小满日影长为(

A.1.5B.2.5C.3.5D.4.5

查看答案和解析>>

同步练习册答案