精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率,且圆过椭圆的上,下顶点.

1)求椭圆的方程.

2)若直线的斜率为,且直线交椭圆两点,点关于点的对称点为,点是椭圆上一点,判断直线的斜率之和是否为定值,如果是,请求出此定值:如果不是,请说明理.

【答案】1;(2)是,0.

【解析】

(1)根据已知条件,求出,即可得到椭圆方程;

(2)设直线的方程为,将其代入椭圆方程后,根据韦达定理以及斜率公式变形,可得答案.

1)因为圆过椭圆的上,下顶点,所以

又离心率,所以

于是有,解得.所以椭圆的方程为

2)由于直线的斜率为,可设直线的方程为,代入椭圆

可得.

由于直线交椭圆两点,所以

整理解得

设点,由于点与点关于原点的对称,故点

于是有.

若直线的斜率分别为,由于点

又∵.

于是有

故直线的斜率之和为0,即.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,平分...

1)设E的中点,求证:平面

2)设平面,若与平面所成的角为45°,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,则当时,讨论的单调性;

(2)若,且当时,不等式在区间上有解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】把函数的图象向右平移个单位长度,再把所得的函数图象上所有点的横坐标缩短到原来的(纵坐标不变)得到函数的图象,关于的说法有:①函数的图象关于点对称;②函数的图象的一条对称轴是;③函数上的最上的最小值为;④函数上单调递增,则以上说法正确的个数是(

A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是自然对数的底数,,已知函数.

1)若函数有零点,求实数的取值范围;

2)对于,证明:时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列有关线性回归分析的四个命题:

①线性回归直线必过样本数据的中心点();

②回归直线就是散点图中经过样本数据点最多的那条直线;

③当相关性系数时,两个变量正相关;

④如果两个变量的相关性越强,则相关性系数就越接近于

其中真命题的个数为(  )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线与坐标轴的交点都在圆C.

1)求圆C的方程;

2)若圆C与直线交于AB两点,且,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为

1)求甲连胜四场的概率;

2)求需要进行第五场比赛的概率;

3)求丙最终获胜的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019625日,《固体废物污染环境防治法(修订草案)》初次提请全国人大常委会审议,草案对“生活垃圾污染环境的防治”进行了专项规定.某小区采取一系列措施,宣传垃圾分类的知识与意义,并采购分类垃圾箱.为了了解垃圾分类的效果,该小区物业随机抽取了200位居民进行问卷调查,每位居民对小区采取的措施给出“满意”或“不满意”的评价.根据调查结果统计并做出年龄分布条形图和持不满意态度的居民的结构比例图,如图,在这200份问卷中,持满意态度的频率是0.65.

1)完成下面的列联表,并判断能否有的把握认为“51岁及以上”和“50岁及以下”的居民对该小区采取的措施的评价有差异

满意

不满意

总计

51岁及以上的居民

50岁及以下的居民

总计

200

2)按“51岁及以上”和“50岁及以下”的年龄段采取分层抽样的方法从中随机抽取5份,再从这5份调查问卷中随机抽取2份进行电话家访,求电话家访的两位居民恰好一位年龄在51岁及以上,另一位年龄在50岁及以下的概率.

0.050

0.025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

附表及参考公式:,其中.

查看答案和解析>>

同步练习册答案