精英家教网 > 高中数学 > 题目详情

【题目】已知,椭圆C过点,两个焦点为EF是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,直线EF的斜率为,直线l与椭圆C相切于点A,斜率为

求椭圆C的方程;

的值.

【答案】1;(20.

【解析】

可设椭圆C的方程为,由题意可得,由椭圆的定义计算可得,进而得到b,即可得到所求椭圆方程;

设直线AE,代入椭圆方程,运用韦达定理可得E的坐标,由题意可将k换为,可得F的坐标,由直线的斜率公式计算可得直线EF的斜率,设出直线l的方程,联立椭圆方程,运用直线和椭圆相切的条件:判别式为0,可得直线l的斜率,进而得到所求斜率之和.

解:由题意可设椭圆C的方程为

即有

所以椭圆的方程为

设直线AE,代入椭圆方程可得

可得,即有

由直线AE的斜率与AF的斜率互为相反数,可将k换为

可得

则直线EF的斜率为

设直线l的方程为,代入椭圆方程可得:

由直线l与椭圆C相切,可得

化简可得,解得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列满足是数列的前项的和.

(1)求数列的通项公式

(2)若成等差数列,18,成等比数列求正整数的值

(3)是否存在使得为数列中的项若存在求出所有满足条件的的值若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】世界卫生组织的最新研究报告显示,目前中国近视患者人数多达6亿,高中生和大学生的近视率均已超过七成,为了研究每周累计户外暴露时间(单位:小时)与近视发病率的关系,对某中学一年级200名学生进行不记名问卷调查,得到如下数据:

每周累积户外暴露时间(单位:小时)

不少于28小时

近视人数

21

39

37

2

1

不近视人数

3

37

52

5

3

(1)在每周累计户外暴露时间不少于28小时的4名学生中,随机抽取2名,求其中恰有一名学生不近视的概率;

(2)若每周累计户外暴露时间少于14个小时被认证为“不足够的户外暴露时间”,根据以上数据完成如下列联表,并根据(2)中的列联表判断能否在犯错误的概率不超过0.01的前提下认为不足够的户外暴露时间与近视有关系?

近视

不近视

足够的户外暴露时间

不足够的户外暴露时间

附:

P

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正方体ABCDABCD′的棱长为1,EF分别是棱AA′,CC′的中点,过直线EF的平面分别与棱BB′、DD′交于MN,设BMxx∈[0,1],给出以下四个命题:

平面MENF⊥平面BDDB′;

当且仅当x时,四边形MENF的面积最小;

四边形MENF周长Lfx),x∈[0,1]是单调函数;

四棱锥C′﹣MENF的体积Vhx)为常函数;

以上命题中假命题的序号为(  )

A. ①④B. C. D. ③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是平行四边形,平面是棱上的一点.

(1)证明:平面

(2)若平面,求的值;

(3)在(2)的条件下,三棱锥的体积是18,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一只药用昆虫的产卵数y与一定范围内的温度x有关, 现收集了该种药用昆虫的6组观测数据如下表:

温度x/C

21

23

24

27

29

32

产卵数y/

6

11

20

27

57

77

经计算得:

,线性回归模型的残差平方和e8.0605≈3167,其中xi, yi分别为观测数据中的温度和产卵数,i=1, 2, 3, 4, 5, 6.

()若用线性回归模型,求y关于x的回归方程=x+(精确到0.1);

()若用非线性回归模型求得y关于x的回归方程为=0.06e0.2303x,且相关指数R2=0.9522.

( i )试与()中的回归模型相比,用R2说明哪种模型的拟合效果更好.

( ii )用拟合效果好的模型预测温度为35C时该种药用昆虫的产卵数(结果取整数).

附:一组数据(x1,y1), (x2,y2), ...,(xn,yn ), 其回归直线=x+的斜率和截距的最小二乘估计为

=;相关指数R2=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求上的最值;

(2)若,当有两个极值点时,总有,求此时实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点, 轴为极轴建立极坐标系,曲线的极坐标为

(1)求曲线的普通方程和曲线的直角坐标方程;

(2)若曲线和曲线有三个公共点,求以这三个公共点为顶点的三角形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列 中,已知 为常数.

(1)证明: 成等差数列;

(2) ,求数列的前n项和

(3)时,数列 中是否存在不同的三项成等比数列,

也成等比数列?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案