精英家教网 > 高中数学 > 题目详情
14.设全集U=R,集合A={x|0<x<4},B={x|x<1或x>3}.
求A∩B,A∪B,A∩(∁UB).

分析 根据已知中全集U=R,集合A={x|0<x<4},B={x|x<1或x>3},结合集合的交集,并集,补集运算,可得答案.

解答 解:∵全集U=R,集合A={x|0<x<4},B={x|x<1或x>3}.
∴A∩B={x|0<x<1,或3<x<4},
A∪B=R,
UB={x|1≤x≤3},
A∩(∁UB)={x|1≤x≤3}.

点评 本题考查的知识点是集合的交集,并集,补集运算,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.求下列函数的导函数:
(1)y=(1-sinx)2
(2)y=ln$\sqrt{{x}^{2}+1}$;
(3)y=e2x
(4)y=ln3x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.△ABC的顶点A在y2=4x上,B,C两点在直线x-2y+5=0上,若$|{\overrightarrow{AB}-\overrightarrow{AC}}|$=2$\sqrt{5}$,则△ABC面积的最小值为(  )
A.$\frac{{\sqrt{5}}}{5}$B.1C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=$log_{\frac{1}{3}}}$(x2-5x+6)的单调递增区间为(-∞,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知${({x^{\frac{2}{3}}}+3{x^2})^n}$的展开式中,各项系数和比它的二项式系数和大992.
(1)求展开式中二项式系数最大的项;
(2)求${S_n}=C_n^1+C_n^2•2+C_n^3•{2^2}+…+C_n^n•{2^{n-1}}$值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求下列不等式的解集
(1)x2-3x-10≥0
(2)-3x2+5x-4>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.用数学归纳法证明不等式1+$\frac{1}{{2}^{3}}$+$\frac{1}{{3}^{3}}$+…+$\frac{1}{{n}^{3}}$<2-$\frac{1}{n}$(n≥2,n∈N+)时,第一步应验证不等式(  )
A.1+$\frac{1}{{2}^{3}}$<2-$\frac{1}{2}$B.1+$\frac{1}{{2}^{3}}$+$\frac{1}{{3}^{3}}$<2-$\frac{1}{3}$
C.1+$\frac{1}{{2}^{3}}$<2-$\frac{1}{3}$D.1+$\frac{1}{{2}^{3}}$+$\frac{1}{{3}^{3}}$<2-$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知过点A($\sqrt{3}$,1)和B(5,12),以x轴正半轴为始边按照逆时针旋转所形成的最小正角分别为α,β.
(1)求sinα和cosβ;    
(2)求sin(2α+β).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数y=x4+$\frac{1}{x^4}$的图象关于 (  )对称.
A.原点B.y轴C.x轴D.直线y=x

查看答案和解析>>

同步练习册答案