精英家教网 > 高中数学 > 题目详情
精英家教网如图所示,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF=
2
2
,则下列结论中错误的是
 

①AC⊥BE;
②EF∥平面ABCD;
③三棱锥A-BEF的体积为定值;
④异面直线AE,BF所成的角为定值.
分析:通过直线AC垂直平面平面BB1D1D,判断①是正确的;通过直线EF平行直线AB,判断EF∥平面ABCD②是正确的;计算三角形BEF 的面积和A到平面BEF的距离是定值,说明③是正确的;只需找出两个特殊位置,即可判断④是不正确的;综合可得答案.
解答:精英家教网解:∵AC⊥平面BB1D1D,又BE?平面BB1D1D
∴AC⊥BE.故①正确.
∵B1D1∥平面ABCD,又E、F在直线D1B1上运动,
∴EF∥平面ABCD.故②正确.
③中由于点B到直线B1D1的距离不变,故△BEF的面积为定值.
又点A到平面BEF的距离为
2
2
,故VA-BEF为定值.③正确
当点E在D1处,F为D1B1的中点时,异面直线AE,BF所成的角是∠OD1A,
当E在上底面的中心时,F在B1的位置,异面直线AE,BF所成的角是∠OEA,
显然两个角不相等,④不正确.
故答案为:④
点评:本题考查直线与平面平行的判定,棱柱、棱锥、棱台的体积,异面直线及其所成的角,考查空间想象能力,逻辑思维能力,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示,正方体ABCD-A1B1C1D1中,E、F分别是AB、BC的中点,G为DD1上一点,且D1G:GD=1:2,AC∩BD=O,求证:平面AGO∥平面D1EF.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,正方体ABCD-A1B1C1D1中,E、F分别是正方体ADD1A1和ABCD的中心,G是C1C的中点,设GF、C1F与AB所成的角分别为α、β,则α+β等于
π
2
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,正方体ABCD-A1B1C1D1中,E、F分别是AB、BC的中点,G为DD1上一点,且D1G:GD=1:2,AC∩BD=O,求证:平面AGO//平面D1EF.

 
 


查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,正方体ABCDA1B1C1D1的棱长为1,点MAB上,且AMAB,点P在平面ABCD上,且动点P到直线A1D1的距离的平方与P到点M的距离的平方差为1,在平面直角坐标系xAy中,动点P的轨迹方程是________.

查看答案和解析>>

科目:高中数学 来源:2012年人教B版高中数学必修2 1.2点 线 面之间的位置关系练习卷(解析版) 题型:解答题

(12分)如图所示,正方体ABCD-A1B1C1D1中,E、F分别是AB、BC的中点,G为DD1上一点,且D1G:GD=1:2,AC∩BD=O,求证:平面AGO//平面D1EF.

 

查看答案和解析>>

同步练习册答案