精英家教网 > 高中数学 > 题目详情
如图ABCD-A1B1C1D1是正方体,B1E1=D1F1=
A1B1
4
,则BE1与DF1所成的角的余弦值是(  )
A.
15
17
B.
1
2
C.
8
17
D.
3
2
如图
先将F1D平移到AF,再平移到E1E,
∠EE1B为BE1与DF1所成的角
设边长为4则,E1E=E1B=
17
,BE=2
cos∠EE1B=
15
17
,故选A
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知四棱柱ABCD-A1B1C1D1的底面是边长为1的正方形,侧棱垂直底边ABCD四棱柱,AA1=2,E是侧棱AA1的中点,求
(1)求异面直线BD与B1E所成角的大小;
(2)求四面体AB1D1C的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在空间四边形OABC中,OA=8,AB=6,AC=4,BC=5,∠OAC=45°,∠OAB=60°.则异面直线AO与BC的夹角的余弦值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,边长为2的正方形ABCD外有一点P,且PA=PB=PC=PD=2中,E是PC的中点.
(1)求证:PA平面EBD;
(2)求异面直线PA与BE所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,已知点P是正方体ABCD-A1B1C1D1的棱A1D1上的一个动点,设异面直线AB与CP所成的角为α,则cosα的最小值是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在三棱锥A-BCD中,AD=BC=2a,E、F分别是AB、CD的中点,EF=
3
a,求AD与BC所成的角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

空间四边形ABCD中,AD=BC=2,E,F分别是AB,CD的中点,EF=
3
,则异面直线AD,BC所成的角为(  )
A.30°B.60°C.90°D.120°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在四棱锥P-ABCD中,底面ABCD是一直角梯,∠BAD=90°,ADBC,AB=BC=a,AD=2a,PA⊥底面ABCD,PD与底面成30°角.
(1)若AE⊥PD,E为垂足,求证:BE⊥PD;
(2)在(1)的条件下,求异面直线AE与CD所成角的余弦值;
(3)求平面PAB与平面PCD所成的锐二面角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,PA、AB、AD两两互相垂直,BCAD,且AB=AD=2BC,E,F分别是PB、PD的中点.
(1)证明:EF平面ABCD;
(2)若PA=AB,求PC与平面PAD所成的角.

查看答案和解析>>

同步练习册答案