精英家教网 > 高中数学 > 题目详情
已知一个平面与正方体的12条棱的夹角均为,那么        .

试题分析::因为棱A1A,A1B1,A1D1与平面AB1D1所成的角相等,所以平面AB1D1就是与正方体的12条棱的夹角均为θ的平面.设棱长为1,易知.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,AB是圆O的直径,PA垂直圆O所在的平面,C是圆O上的点.

(1)求证:BC⊥平面PAC
(2)设QPA的中点,G为△AOC的重心,求证:QG∥平面PBC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱ABC-A1B1C1中,点M是A1B的中点,点N是B1C的中点,连接MN

(Ⅰ)证明:MN//平面ABC;
(Ⅱ)若AB=1,AC=AA1=,BC=2,求二面角A—A1C—B的余弦值的大小

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,.

(Ⅰ)证明:
(Ⅱ)若求四棱锥的体积

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱柱中,侧棱底面

(1)证明:平面
(2)若是棱的中点,在棱上是否存在一点,使平面?证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正方体-中,与平面ABCD所成角的余弦值为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

关于异面直线的定义,下列说法中正确的是(    )
A.平面内的一条直线和这平面外的一条直线
B.分别在不同平面内的两条直线
C.不在同一个平面内的两条直线
D.不同在任何一个平面内的两条直线.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如果正四棱锥的底面边长为2,侧面积为,则它的侧面与底面所成的(锐)二面角的大小为        .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直角梯形中,为线段的中点,将沿折起,使平面⊥平面,得到几何体.

(1)若分别为线段的中点,求证:∥平面
(2)求证:⊥平面
(3)的值.

查看答案和解析>>

同步练习册答案