精英家教网 > 高中数学 > 题目详情
已知方程ax2+by2=ab和ax+by+c=0(其中ab≠0,a≠b,c>0),它们所表示的曲线可能是(  )
A.B.C.D.
方程ax2+by2=ab化成:
x2
b
+
y2
a
=1
,ax+by+c=0化成:y=-
a
b
x-
c
b

对于A:由双曲线图可知:b>0,a<0,∴-
a
b
>0,即直线的斜率大于0,故错;
对于C:由椭圆图可知:b>0,a>0,∴-
a
b
<0,即直线的斜率小于0,故错;
对于D:由椭圆图可知:b>0,a>0,∴-
a
b
<0,即直线的斜率小于0,故错;
故选B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知线段AB的端点B的坐标是(1,2),端点A在圆(x+1)2+y2=4上运动,点M是AB的中点.
(1)若点M的轨迹为曲线C,求此曲线的方程;
(2)设直线l:x+y+3=0,求曲线C上的点到直线l距离的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C1和抛物线C2有公共焦点F(1,0),C1的中心和C2的顶点都在坐标原点,过点M(4,0)的直线l与抛物线C2分别相交于A,B两点.
(Ⅰ)写出抛物线C2的标准方程;
(Ⅱ)若
AM
=
1
2
MB
,求直线l的方程;
(Ⅲ)若坐标原点O关于直线l的对称点P在抛物线C2上,直线l与椭圆C1有公共点,求椭圆C1的长轴长的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆C1
x2
a2
+
y2
b2
=1
(a>b>0)和圆C2:x2+y2=b2,已知圆C2将椭圆C1的长轴三等分,椭圆C1右焦点到右准线的距离为
2
4
,椭圆C1的下顶点为E,过坐标原点O且与坐标轴不重合的任意直线l与圆C2相交于点A、B.
(1)求椭圆C1的方程;
(2)若直线EA、EB分别与椭圆C1相交于另一个交点为点P、M.
①求证:直线MP经过一定点;
②试问:是否存在以(m,0)为圆心,
3
2
5
为半径的圆G,使得直线PM和直线AB都与圆G相交?若存在,请求出所有m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的离心率为
3
2
,以原点为圆心,椭圆的短半轴为半径的圆与直线x-y+
2
=0
相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设P(4,0),M,N是椭圆C上关于x轴对称的任意两个不同的点,连接PN交椭圆C于另一点E,求直线PN的斜率的取值范围;
(Ⅲ)在(Ⅱ)的条件下,证明直线ME与x轴相交于定点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的左右焦点分别为F1,F2,线段F1F2被抛物线y2=2bx的焦点F内分成了3:1的两段.
(1)求椭圆的离心率;
(2)过点C(-1,0)的直线l交椭圆于不同两点A、B,且
AC
=2
CB
,当△AOB的面积最大时,求直线l和椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直线l1过A(0,1),与直线x=-2相交于点P(-2,y0),直线l2过B(0,-1)与x相交于Q(x0,0),x0、y0满足y0-
x0
2
=1
,l1∩l2=M.
(Ⅰ)求直线l1的方程(方程中含有y0);
(Ⅱ)求点M的轨迹C的方程;
(Ⅲ)过C左焦点F1的直线l与C相交于点A、B,F2为C的右焦点,求△ABF2面积最大时点F2到直线l的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆G:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
6
3
,右焦点为(2
2
,0),斜率为1的直线l与椭圆G交与A、B两点,以AB为底边作等腰三角形,顶点为P(-3,2).
(Ⅰ)求椭圆G的方程;
(Ⅱ)求△PAB的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
3
2
,以椭圆C的左顶点T为圆心作圆T:(x+2)2+y2=r2(r>0),设圆T与椭圆C交于点M与点N.
(1)求椭圆C的方程;
(2)求
TM
TN
的最小值,并求此时圆T的方程;
(3)设点P是椭圆C上异于M,N的任意一点,且直线MP,NP分别与x轴交于点R,S,O为坐标原点,求证:|OR|•|OS|为定值.

查看答案和解析>>

同步练习册答案