精英家教网 > 高中数学 > 题目详情
精英家教网如图ABCD-A1B1C1D1是正方体,M、N分别是线段AD1和BD上的中点
(Ⅰ)证明:直线MN∥平面B1D1C;
(Ⅱ)设正方体ABCD-A1B1C1D1棱长为a,若以D为坐标原点,分别以DA,DC,DD1所在的直线为x轴、y轴、z轴,建立空间直角坐标系,试写出B1、M两点的坐标,并求线段B1M的长.
分析:(Ⅰ)证明:连接CD1、AC、则N是AC的中点,由三角形中位线证得MN∥CD1,从而由线面平行的判定定理证得直线MN∥平面B1D1C;(Ⅱ)先求得各点的坐标,再由两点间的距离公式求解.
解答:精英家教网证明:(Ⅰ)证明:连接CD1、AC、则N是AC的中点(2分)
在△ACD1,又M是AD1的中点
∴MN∥CD1,又CD1?平面ACD1.(3分)∴MN∥平面ADC1.(5分)
(Ⅱ)B1(a,a,a),M(
a
2
,0,
a
2
)(8分)|B1M|=
(a-
a
2
)
2
+(a-0)2+(a-
a
2
)
2
=
6
2
a
(10分)
点评:本题主要考查空间线线、线面、面面位置平行关系转化,空间直角坐标系的概念与运算等基础知识,同时考查空间想象能力和推理运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,长方体ABCD-A1B1C1D1中,AB=A1A=a,BC=
2
a,M是AD中点,N是B1C1中点.
(1)求证:A1、M、C、N四点共面;
(2)求证:BD1⊥MCNA1
(3)求证:平面A1MNC⊥平面A1BD1
(4)求A1B与平面A1MCN所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在长方体ABCD-A1B1C1D1中,点E、F分别BB1、DD1上,且AE⊥A1B,AF⊥A1D.
(1)求证:A1C⊥平面AEF;
(2)若规定两个平面所成的角是这两个平面所组成的二面角中的锐角(或直角),则在空间中有定理:若两条直线分别垂直于两个平面,则这两条直线所成的角与这两个平面所成的角相等.
试根据上述定理,在AB=4,AD=3,AA1=5时,求平面AEF与平面D1B1BD所成的角的大小.(用反三角函数值表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在正方体ABCD-A1B1C1D1中,棱长为a,M、N分别为A1B和AC上的点,A1M=AN=
2
a
3
,则MN与平面BB1C1C的位置关系是(  )
A、相交B、平行
C、垂直D、不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在正方体ABCD-A1B1C1D1中,直线A1B与平面A1B1CD所成的角的大小等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•无锡二模)如图,已知四棱柱ABCD-A1B1C1D1的底面ABCD为直角梯形,AB∥CD,AB⊥AD,AB=AD=A1B=2CD,侧面A1ADD1为正方形.
(1)求直线A1A与底面ABCD所成角的大小;
(2)求二面角C-A1B-A正切值的大小;
(3)在棱C1C上是否存在一点P,使得 D1P∥平面A1BC,若存在,试说明点P的位置;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案