精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆 C: 的焦距为2,且过点,右焦点为.设A,B 是C上的两个动点,线段 AB 的中点M 的横坐标为,线段AB的中垂线交椭圆C于P,Q 两点.

(1)求椭圆 C 的方程;

(2)设M点纵坐标为m,求直线PQ的方程,并求的取值范围.

【答案】(1);(2).

【解析】

(1)利用椭圆C:(a>b>0)的焦距为2,且过点(1,),建立方程组,求出a,b,即可求椭圆C的方程;

(2)分类讨论,求出直线PQ的方程,与椭圆方程联立,结合向量的数量积,在椭圆的内部,利用换元法,即可求的取值范围.

(1) 因为椭圆 的焦距为 ,且过点K ,所以,所以,于是 ,所以椭圆 的方程为

(2) 由题意,当直线 垂直于 轴时,直线 方程为 ,此时

当直线 不垂直于 轴时,设直线 的斜率为 由线段 的中点 的横坐标为 ,得 ,故 .此时,直线 斜率为 的直线方程为 ,即 联立 消去 ,整理得 ,所以

于是

由于 在椭圆的内部,故 ,令

.又 ,所以 .综上, 的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在某海礁A处有一风暴中心,距离风暴中心A正东方向200km的B处有一艘轮船,正以北偏西a(a为锐角)角方向航行,速度为40km/h.已知距离风暴中心180km以内的水域受其影响.

(1)若轮船不被风暴影响,求角α的正切值的最大值?

(2)若轮船航行方向为北偏西45°,求轮船被风暴影响持续多少时间?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆C: =1的右焦点F,过焦点F的直线l0⊥x轴,P(x0 , y0)(x0y0≠0)为C上任意一点,C在点P处的切线为l,l与l0相交于点M,与直线l1:x=3相交于N.
(I) 求证;直线 =1是椭圆C在点P处的切线;
(Ⅱ)求证: 为定值,并求此定值;
(Ⅲ)请问△ONP(O为坐标原点)的面积是否存在最小值?若存在,请求出最小及此时点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的程序框图的算法思路源于我国古代数学中的秦九韶算法,执行该程序框图,则输出的结果S表示的值为(

A.a0+a1+a2+a3
B.(a0+a1+a2+a3)x3
C.a0+a1x+a2x2+a3x3
D.a0x3+a1x2+a2x+a3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如表是一个由n2个正数组成的数表,用aij表示第i行第j个数(i,j∈N),已知数表中第一列各数从上到下依次构成等差数列,每一行各数从左到右依次构成等比数列,且公比都相等.已知a11=1,a31+a61=9,a35=48.

(1)求an1和a4n
(2)设bn= +(﹣1)na (n∈N+),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin2ωx(ω>0),将y=f(x)的图象向右平移 个单位长度后,若所得图象与原图象重合,则ω的最小值等于(
A.2
B.4
C.6
D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥P﹣ABCD中,底面ABCD是直角梯形,∠ADC=90°,AB∥CD,AD=DC= AB= ,平面PBC⊥平面ABCD.

(1)求证:AC⊥PB;
(2)若PB=PC= ,问在侧棱PB上是否存在一点M,使得二面角M﹣AD﹣B的余弦值为 ?若存在,求出 的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方体ABCD﹣A1B1C1D1中,点E是棱A1B1的中点,则直线AE与平面BDD1B1所成角的正弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】连续抛掷同一颗均匀的骰子,令第i次得到的点数为ai , 若存在正整数k,使a1+a2+…+ak=6,则称k为你的幸运数字.
(1)求你的幸运数字为3的概率;
(2)若k=1,则你的得分为5分;若k=2,则你的得分为3分;若k=3,则你的得分为1分;若抛掷三次还没找到你的幸运数字则记0分,求得分X的分布列和数学期望.

查看答案和解析>>

同步练习册答案