(本题满分12分)设正项数列的前项和,且满足.
(Ⅰ)计算的值,猜想的通项公式,并证明你的结论;
(Ⅱ)设是数列的前项和,证明:.
(Ⅰ);;.猜想,用数学归纳法证明;(Ⅱ)先利用数列知识求和,然后利用放缩法证明或者利用数学归纳法证明
【解析】
试题分析:(Ⅰ)当n=1时,,得;,得;
,得.猜想 2’
证明:(ⅰ)当n=1时,显然成立.
(ⅱ)假设当n=k时, 1’
则当n=k+1时,
结合,解得 2’
于是对于一切的自然数,都有 1’
(Ⅱ)证法一:因为, 3’
.3’
证法二:数学归纳法
证明:(ⅰ)当n=1时,,, 1’
(ⅱ)假设当n=k时, 1’
则当n=k+1时,
要证:
只需证:
由于
所以 3’
于是对于一切的自然数,都有 1’
考点:本题考查了数学归纳法的运用
点评:运用数学归纳法,可以证明下列问题:与自然数n有关的恒等式、代数不等式、三角不等式、数列问题、几何问题、整除性问题等等。
科目:高中数学 来源:2014届吉林省吉林市高二上学期期中理科数学试卷(解析版) 题型:解答题
(本题满分12分)
设命题:实数满足, 命题:实数满足.
当为真,求实数的取值范围;
查看答案和解析>>
科目:高中数学 来源:2012-2013学年河北省石家庄市高三暑期第二次考试理科数学试卷(解析版) 题型:解答题
(本题满分12分)设函数.
(1)求函数的单调区间;
(2)若对恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年湖北省高三十一月份阶段性考试理科数学 题型:解答题
(本题满分12分)设函数,其中。
(Ⅰ)当时,求不等式的解集;
(Ⅱ)若不等式的解集为 ,求a的值。
查看答案和解析>>
科目:高中数学 来源:2010-2011年云南省高二上学期期末数学理卷 题型:解答题
(本题满分12分)
设,分别是椭圆:的左、右焦点,过斜率为1的直线与相交于、两点,且,,成等差数列,
(Ⅰ)求的离心率;
(Ⅱ)设点满足,求的方程。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com