分析 (Ⅰ)可延长BE并交圆E于M,并连接CM,从而画出图形,根据条件便可求出BC的长,进而求出AC的长,从而根据切割线定理求出AF的长;
(Ⅱ)可过E作EH⊥BC,从而可得出△EDH与△ADF相似,从而有$\frac{ED}{AD}=\frac{EH}{AF}$,再根据题意即可得出EH的长,从而便可求出$\frac{ED}{AD}$的值.
解答 解:(Ⅰ)如图,延长BE交圆E于点M,连结CM,则∠BCM=90°,
又BM=2BE=4,∠EBC=30°,所以$BC=2\sqrt{3}$,
又$AB=\frac{1}{3}AC$,可知$AB=\frac{1}{2}BC=\sqrt{3}$,所以$AC=3\sqrt{3}$.
根据切割线定理得$A{F^2}=AB•AC=\sqrt{3}×3\sqrt{3}=9$,即AF=3.
(Ⅱ)过E作EH⊥BC于H,则△EDH∽△ADF,从而有$\frac{ED}{AD}=\frac{EH}{AF}$,
又由题意知$BH=\frac{1}{2}BC=\sqrt{3},BE=2$
所以EH=1,
因此$\frac{ED}{AD}=\frac{1}{3}$.
点评 考查直径所对圆周角为直角,三角函数定义,以及切割线定理,三角形相似的判定,相似三角形的对应边的比例关系.
科目:高中数学 来源: 题型:选择题
A. | 8+$\frac{7}{3}$π | B. | 8+$\frac{8}{3}$π | C. | 8+$\frac{10}{3}$π | D. | 8+3π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{{\sqrt{3}}}{3}$ | B. | $\frac{1}{3}$ | C. | $\frac{{\sqrt{2}}}{4}$ | D. | $\frac{{3\sqrt{2}}}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com