精英家教网 > 高中数学 > 题目详情
13.如图,过圆E外一点A作一条直线与圆E交于B,C两点,且AB=$\frac{1}{3}$AC,作直线AF与圆E相切于点F,连结EF交BC于点D,已知圆E的半径为2,∠EBC=30°.
(Ⅰ)求AF的长;
(Ⅱ)求$\frac{ED}{AD}$的值.

分析 (Ⅰ)可延长BE并交圆E于M,并连接CM,从而画出图形,根据条件便可求出BC的长,进而求出AC的长,从而根据切割线定理求出AF的长;
(Ⅱ)可过E作EH⊥BC,从而可得出△EDH与△ADF相似,从而有$\frac{ED}{AD}=\frac{EH}{AF}$,再根据题意即可得出EH的长,从而便可求出$\frac{ED}{AD}$的值.

解答 解:(Ⅰ)如图,延长BE交圆E于点M,连结CM,则∠BCM=90°,

又BM=2BE=4,∠EBC=30°,所以$BC=2\sqrt{3}$,
又$AB=\frac{1}{3}AC$,可知$AB=\frac{1}{2}BC=\sqrt{3}$,所以$AC=3\sqrt{3}$.
根据切割线定理得$A{F^2}=AB•AC=\sqrt{3}×3\sqrt{3}=9$,即AF=3.
(Ⅱ)过E作EH⊥BC于H,则△EDH∽△ADF,从而有$\frac{ED}{AD}=\frac{EH}{AF}$,

又由题意知$BH=\frac{1}{2}BC=\sqrt{3},BE=2$
所以EH=1,
因此$\frac{ED}{AD}=\frac{1}{3}$.

点评 考查直径所对圆周角为直角,三角函数定义,以及切割线定理,三角形相似的判定,相似三角形的对应边的比例关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.某几何体的三视图如图所示,则该几何体的体积是(  )
A.8+$\frac{7}{3}$πB.8+$\frac{8}{3}$πC.8+$\frac{10}{3}$πD.8+3π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.某几何体的三视图如图所示,则该几何体的体积为5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在三棱柱ABC-A1B1C1中,∠ACB=90°,AC1⊥平面ABC,BC=CA=AC1
(Ⅰ)求证:AC⊥平面AB1C1
(Ⅱ)求二面角A1-BB1-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=$\frac{{x}^{2}}{{e}^{x}}$,给出下列结论:
①f(x)的单调递增区间是(0,2);
②函数y=f(x)的图象与直线y=k(k∈R)至少有一个公共点;
③函数y=f(x)的图象与y=x3-2x2+x的图象有三个公共点,
其中正确的序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.某校数学课外小组在坐标纸上为学校的一块空地设计植树方案如下:第k棵树种植在点Pk(xk,yk)处,其中x1=1,y1=1,当k≥2时,$\left\{\begin{array}{l}{{x}_{k}={x}_{k-1}+1-5[T(\frac{k-1}{5})-T(\frac{k-2}{5})]}\\{{y}_{k}={y}_{k-1}+T(\frac{k-1}{5})-T(\frac{k-2}{5})}\end{array}\right.$.其中T(a)表示非负实数a的整数部分,例如T(2.6)=2,T(0.2)=0.按此方案,第6棵树种植点的坐标应为(1,2);第2015棵树种植点的坐标应为(5,403).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图所示为某几何体形状的纸盒的三视图,在此纸盒内放一个小正四面体,若小正四面体在纸盒内可以任意转动,则小正四面体的棱长的最大值为(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{1}{3}$C.$\frac{{\sqrt{2}}}{4}$D.$\frac{{3\sqrt{2}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若角α的余弦线长度为0,则它的正弦线的长度为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知数列{an}的前n项和为Sn,若an=$\frac{1}{\sqrt{n}+\sqrt{n-1}}$(n∈N*),则S2009的值为$\sqrt{2009}$.

查看答案和解析>>

同步练习册答案