精英家教网 > 高中数学 > 题目详情

设函数f(x)=(x _ 1)ex _ kx2(k∈R).
(Ⅰ)当k=1时,求函数f(x)的单调区间;
(Ⅱ)当k∈(1/2,1]时,求函数f(x)在[0,k]上的最大值M.

(Ⅰ)函数的递减区间为,递增区间为,.
(Ⅱ)函数上的最大值.

解析试题分析:(Ⅰ) 当时,
,
,得,
变化时, 的变化如下表:















极大值

极小值

 由表可知,函数的递减区间为,递增区间为,.     6分
(Ⅱ) ,
,得,,
,则,所以上递增,
所以,从而,所以
所以当时, ;当

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知为函数图象上一点,O为坐标原点,记直线的斜率
(1)若函数在区间上存在极值,求实数m的取值范围;
(2)当 时,不等式恒成立,求实数的取值范围;
(3)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)若时,,求的最小值;
(Ⅱ)设数列的通项,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若处取得极值,求的极大值;
(2)若在区间的图像在图像的上方(没有公共点),求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(I)若a=-1,求函数的单调区间;
(Ⅱ)若函数的图象在点(2,f(2))处的切线的倾斜角为45o,对于任意的t [1,2],函数的导函数)在区间(t,3)上总不是单调函数,求m的取值范围;
(Ⅲ)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线处的切线互相垂直,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(Ⅰ)如果函数的单调递减区间为,求函数的解析式;
(Ⅱ)对一切的,恒成立,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数时都取得极值
求a、b的值;
(2)函数f(x)的极值;
(3)若,方程恰好有三个根,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若函数
(Ⅰ)当时,求函数的单调增区间;
(Ⅱ)函数是否存在极值.

查看答案和解析>>

同步练习册答案