精英家教网 > 高中数学 > 题目详情
18.在直角坐标系xoy中,已知曲线${C_1}:\left\{\begin{array}{l}x=cosα\\ y={sin^2}α\end{array}\right.$(α为参数),在以O为极点,x轴正半轴为极轴的极坐标系中,曲线${C_2}:ρcos(θ-\frac{π}{4})=-\frac{{\sqrt{2}}}{2}$,曲线C3:ρ=2sinθ
(1)求曲线C1,C2交点的直角坐标
(2)设点A、B分别为曲线C2,C3上的动点,求|AB|的最大值.

分析 (l)求出曲线C1的普通方程和曲线C2的直角坐标方程,联立方程组能求出曲线C1与C2的交点M的直角坐标.
(2)曲线C3是以C(0,1)为圆心,半径r=1的圆,求出圆心C,点B到直线x+y+1=0的距离d,d',由此能求出|AB|的最大值.

解答 解:(1)由曲线${C_1}:\left\{\begin{array}{l}x=cosα\\ y={sin^2}α\end{array}\right.$(α为参数),
消去参数α可得:得:y+x2=1,x∈[-1,1],①
曲线${C_2}:ρcos(θ-\frac{π}{4})=-\frac{{\sqrt{2}}}{2}$,可变形为ρcosθ+ρsinθ+1=0,
∴曲线C2:x+y+1=0,②,
联立①②可得:消去y可得:x2-x-2=0,解得x=-1或x=2(舍去),
∴M(-1,0).
(2)曲线C3:ρ=2sinθ,即ρ2=2ρsinθ,
∴曲线C3:x2+(y-1)2=1,是以C(0,1)为圆心,半径r=1的圆,
而曲线${C_2}:ρcos(θ-\frac{π}{4})=-\frac{{\sqrt{2}}}{2}$,即x+y+1=0是一条直线,
设圆心C到直线x+y+1=0的距离分别为d,
则d=$\frac{|0+1+1|}{\sqrt{2}}$=$\sqrt{2}$,
分析可得|AB|≤d+1=$\sqrt{2}$+1,
则|AB|的最大值为$\sqrt{2}$+1.

点评 本题考查曲线的交点的直角坐标的求法,考查线段的最小值的求法,是中档题,解题时要认真审题,注意点到直线的距离公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.在△ABC中,a,b,c分别为三个内角A,B,C所对的边,设向量$\overrightarrow{m}$=(b-c,c-a),$\overrightarrow{n}$=(b,c+a),且$\overrightarrow{m}$⊥$\overrightarrow{n}$.若直线y=bx+c过圆C:x2+y2-2x-2y=1的圆心,则△ABC面积的最大值为(  )
A.$\frac{\sqrt{2}}{6}$B.$\frac{\sqrt{3}}{16}$C.2$\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.对于实数a,b,c,d,规定一种运算$|\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}|$=ad-bc,如$|\begin{array}{l}{1}&{0}\\{2}&{(-2)}\end{array}|$=1×(-2)-0×2=-2,那么当$|\begin{array}{l}{(x+1)}&{(x+2)}\\{(x-3)}&{(x-1)}\end{array}|$=27时,x=22.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数$y=\frac{-cosx}{ln|x|}$的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.幂函数$f(x)={x^{\frac{1}{5}}}$,若0<x1<x2,则$f({\frac{{{x_1}+{x_2}}}{2}})$,$\frac{{f({x_1})+f({x_2})}}{2}$大小关系是(  )
A.$f({\frac{{{x_1}+{x_2}}}{2}})<\frac{{f({x_1})+f({x_2})}}{2}$B.$f({\frac{{{x_1}+{x_2}}}{2}})>\frac{{f({x_1})+f({x_2})}}{2}$
C.$f({\frac{{{x_1}+{x_2}}}{2}})=\frac{{f({x_1})+f({x_2})}}{2}$D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)已知5a=3,5b=4,求a,b.并用a,b表示log2512;
(2)若${x^{\frac{1}{2}}}+{x^{-\frac{1}{2}}}=5$,求$\frac{x}{{{x^2}+1}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若函数y=f(x)对任意的x,y∈R,恒有f(x+y)=f(x)+f(y).当x>0时,恒有f(x)<0
(1)判断函数f(x)的奇偶性,并证明你的结论;
(2)判断函数f(x)的单调性,并证明你的结论;
(3)若f(2)=1,解不等式f(-x2)+2f(x)+4≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在复平面内,设z=1+i(i是虚数单位),则$|\frac{2}{z}-z|$=(  )
A.0B.$\sqrt{2}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)=sinx+cosx的图象向右平移φ(φ>0)个单位长度后,所得的函数图象关于原点对称,则φ的最小值是(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$C.$\frac{3}{4}π$D.$\frac{3}{2}π$

查看答案和解析>>

同步练习册答案