【题目】如图,在四边形中,,以为折痕把折起,使点到达点的位置,且.
(1)证明:平面;
(2)若为的中点,二面角等于60°,求直线与平面所成角的正弦值.
科目:高中数学 来源: 题型:
【题目】在发生某公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志是“连续10日,每天新增疑似病例不超过7人”.已知过去10日,、、三地新增疑似病例数据信息如下:
地:总体平均数为3,中位数为4;
地:总体平均数为2,总体方差为3;
地:总体平均数为1,总体方差大于0;
则、、三地中,一定没有发生大规模群体感染的是__________地.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为椭圆上的一点,F为椭圆的右焦点,且垂直于x轴,不过原点O的直线交椭圆于A,B两点,线段的中点M在直线上.
(1)求椭圆C的标准方程;
(2)当的面积最大时,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面直角坐标系中,曲线的参数方程为(为参数,且).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线的普通方程和曲线的直角坐标方程;
(2)已知点P的极坐标为,Q为曲线上的动点,求的中点M到曲线的距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱柱的底面是等边三角形,在底面ABC上的射影为的重心G.
(1)已知,证明:平面平面;
(2)若三棱柱的侧棱与底面所成角的正切值为,,求点到平面的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以直角坐标系的原点O为极点,x轴的非负半轴为极轴,建立极坐标系,并在两种坐标系中取相同的长度单位.已知圆和圆的极坐标方程分别是和.
(1)求圆和圆的公共弦所在直线的直角坐标方程;
(2)若射线:与圆的交点为O、P,与圆的交点为O、Q,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正四棱锥的底面边长为高为其内切球与面切于点,球面上与距离最近的点记为,若平面过点,且与平行,则平面截该正四棱锥所得截面的面积为______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com