精英家教网 > 高中数学 > 题目详情

【题目】如图,在四边形中,,以为折痕把折起,使点到达点的位置,且.

1)证明:平面

2)若的中点,二面角等于60°,求直线与平面所成角的正弦值.

【答案】1)证明见解析(2

【解析】

1)利用线面垂直的判定定理和性质定理即可证明;

2)由题意知,,取的中点,连接,易知两两垂直,以为原点建立如图所示的坐标系,设,平面的一个法向量为,求出向量,则向量所成角的余弦值的绝对值即为所求.

1)证明:因为

所以平面

又因为平面,所以.

又因为

所以平面.

2)因为

所以是二面角的平面角,即

中,

的中点,连接,因为,

所以,由(1)知,平面的中位线,

所以,即两两垂直,

为原点建立如图所示的坐标系,设,则

,设平面的一个法向量为

则由,得

所以

所以直线与平面所成角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)若 处导数相等,证明:

(2)若对于任意 ,直线 与曲线都有唯一公共点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在发生某公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志是连续10日,每天新增疑似病例不超过7”.已知过去10日,三地新增疑似病例数据信息如下:

地:总体平均数为3,中位数为4

地:总体平均数为2,总体方差为3

地:总体平均数为1,总体方差大于0

三地中,一定没有发生大规模群体感染的是__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为椭圆上的一点,F为椭圆的右焦点,且垂直于x轴,不过原点O的直线交椭圆于AB两点,线段的中点M在直线.

1)求椭圆C的标准方程;

2)当的面积最大时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中,曲线的参数方程为为参数,且.以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)求曲线的普通方程和曲线的直角坐标方程;

2)已知点P的极坐标为Q为曲线上的动点,求的中点M到曲线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱的底面是等边三角形,在底面ABC上的射影为的重心G.

1)已知,证明:平面平面

2)若三棱柱的侧棱与底面所成角的正切值为,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点O为极点,x轴的非负半轴为极轴,建立极坐标系,并在两种坐标系中取相同的长度单位.已知圆和圆的极坐标方程分别是.

1)求圆和圆的公共弦所在直线的直角坐标方程;

2)若射线与圆的交点为OP,与圆的交点为OQ,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在直三棱柱中,,点在线段.

1)若,求异面直线所成角的余弦值;

2)若直线与平面所成角为,试确定点的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正四棱锥的底面边长为高为其内切球与面切于点,球面上与距离最近的点记为,若平面过点且与平行,则平面截该正四棱锥所得截面的面积为______.

查看答案和解析>>

同步练习册答案