精英家教网 > 高中数学 > 题目详情
15.若函数f(x)=$\left\{\begin{array}{l}{-x+4,x≤2}\\{1+lo{g}_{a}x,x>2}\end{array}\right.$,(a>0且a≠1)的值域是[2,+∞),则实数a的取值范围是(1,2].

分析 当x≤2时,f(x)=-x+4≥2;当x>2时,f(x)=1+logax,由于函数f(x)的值域是[2,+∞),可得a>1,1+loga2≥2,解得a范围即可得出.

解答 解:当x≤2时,f(x)=-x+4≥2;
当x>2时,f(x)=1+logax,
∵函数f(x)的值域是[2,+∞),
∴a>1,1+loga2≥2,解得1<a≤2.
∴实数a的取值范围是(1,2].
故答案为:(1,2].

点评 本题考查了分段函数的单调性值域、对数的运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知正项数列{an}的前n项和为Sn,若4Sn2-2=an2+$\frac{1}{{a}_{n}^{2}}$(n∈N*),则S2015=(  )
A.2015+$\frac{\sqrt{2015}}{2015}$B.2015-$\frac{\sqrt{2015}}{2015}$C.2015D.$\sqrt{2015}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=f′($\frac{π}{2}$)cosx-sinx+2x,那么f′($\frac{π}{4}$)=2-$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.某国际旅行社为准备2002年韩日世界杯足球赛,招聘了10名翻译人员,其中4人会说朝鲜语,2人既会说朝鲜语又会说日语,现打算从10人中选4人作朝鲜语翻译,4人作日语翻译,分别带领球迷团赴韩日观看足球赛,则不同的选派翻译的方法有61(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.6名男生和4名女生排成前后两排,其中选择2个男生2个女生站前排,其余的6人都站后排,求排法种数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.依法纳税是每个公民应尽的义务,国家征收个人工资、薪金所得税是分段计算的:总收入不超过3500元,免征个人工资、薪金所得税;超过3500元的部分需征税,设全月应纳税额(所得额指工资、薪金中应纳税的部分)为x,x=(全月总收入-“三险一金”-扣除数)元,税率如表所示:
级  数全月应纳税所得额x税  率
1不超过1500元的部分3%
2超过1500元至4500元的部分10%
3超过4500元至9000元的部分20%
4超过9000元至35000元的部分25%
5超过35000元至55000元的部分30%
6超过55000元至80000元的部分35%
7超过80000元的部分45%
(1)若应纳税所得额为f(x),试用分段函数表示1~3级纳税额f(x)的计算公式;
(2)某单位按工资额的19%为其职工缴纳“三险一金”(养老保险8%、医疗保险2%、失业保险1%、住房公积金8%),2014年1月份该单位某职工缴税40.8元,请问该职工该月总收入多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知$\overrightarrow{a}$=3$\overrightarrow{x}$+4$\overrightarrow{y}$,$\overrightarrow{b}$=2$\overrightarrow{x}$-3$\overrightarrow{y}$,则$\overrightarrow{x}$=$\frac{3}{17}$$\overrightarrow{a}$+$\frac{4}{17}$$\overrightarrow{b}$,$\overrightarrow{y}$=$\frac{2}{17}$$\overrightarrow{a}$-$\frac{3}{17}$$\overrightarrow{b}$(用$\overrightarrow{a}$,$\overrightarrow{b}$表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.以直角坐标系的原点O为极点,X轴的正半轴为极轴,建立坐标系,两个坐标系取相同的单位长度.已知直线L的参数方程为$\left\{\begin{array}{l}x=1+tcosα\\ y=tsina\end{array}\right.$(t为参数,0<a<π),曲线C的极坐标方程为ρsin2θ=4cosθ
(1)求曲线C的直角坐标方程
(2)设直线L与曲线C相交于A,B两点,|AB|=8时,求α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知F1,F2为椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{16}$=1的左、右焦点,M为椭圆上一点,且△MF1F2的内切圆的周长等于3π,若满足条件的点M恰好有2个,则a2=25.

查看答案和解析>>

同步练习册答案